PRELIM PROBLEM SOLUTIONS
THE GRAD STUDENTS + KEN

CONTENTS
1. Complex Analysis Practice Problems 2.0 1
2. Real Analysis Practice Problems 2.0 4
3. Algebra Practice Problems 2.0 8

1. Complex Analysis Practice Problems 2.0

Complex 2.0 #9.2
Let D be a domain which contains in its interior the closed unit disk $|z| \leq 1$. Let $f(z)$ be analytic in D except at a finite number of points z_1, \ldots, z_k on the unit circle $|z| = 1$ where $f(z)$ has first order poles with residues s_1, \ldots, s_k. Let the Taylor series of $f(z)$ at the origin be $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Prove that there exists a positive constant M such that $|a_n| \leq M$.

Proof. From the given information, the function g defined by

$$ g(z) = f(z) - \sum_{j=1}^{k} \frac{s_j}{z - z_j} $$

is holomorphic on all of D. In particular, its Taylor series $\sum_{n=0}^{\infty} b_n z^n$ converges to g with a radius of convergence $r > 1$. Then

$$ \limsup_{n \to \infty} \sqrt[n]{|b_n|} = \frac{1}{r} < 1, $$

which implies that

$$ \limsup_{n \to \infty} |b_n| < 1, $$

which in turn implies that there exists some constant $B > 0$ such that $|b_n| < B$ for all $n \geq 0$. If we solve for $f(z)$ in the formula for $g(z)$ above, we get

$$ f(z) = g(z) + \sum_{j=1}^{k} \frac{s_j}{z - z_j} = \sum_{n=0}^{\infty} b_n z^n + \sum_{j=1}^{k} -\frac{s_j}{z_j} \frac{1}{1 - \frac{z}{z_j}} $$

$$ = \sum_{n=0}^{\infty} b_n z^n + \sum_{j=1}^{k} -\frac{s_j}{z_j} \sum_{p=0}^{\infty} (\frac{z}{z_j})^{-p} z^p $$

$$ = \sum_{n=0}^{\infty} \left(b_n - \sum_{j=1}^{k} \frac{s_j}{z_j} \frac{1}{z^{n+1}} \right) z^n = \sum_{n=0}^{\infty} a_n z^n. $$
Then
\[
|a_n| = \left| b_n - \sum_{j=1}^{k} \frac{s_j}{z_j^{n+1}} \right|
\leq B + \sum_{j=1}^{k} \frac{|s_j|}{|z_j|^{n+1}}
= B + \sum_{j=1}^{k} |s_j|.
\]

Thus, the conclusion holds with \(M = B + \sum_{j=1}^{k} |s_j| \). \(\square \)

Complex 2.0 #12.5

Let \(A \) be a simply-connected open set in \(\mathbb{C} \), and let \(\alpha \) be a closed, Jordan, rectifiable curve in \(A \) with interior \(I(\alpha) \). Suppose that \(f \) is a holomorphic function on \(A \) such that the restriction \(f|_{\alpha} \) is one-to-one. Prove that \(f \) has at most one zero in \(I(\alpha) \).

Proof. Note that \(f \) has no poles.

First, suppose that \(f \) has no zero on \(\alpha \).

Then the argument principle implies that
\[
Z = Z - P = \frac{1}{2\pi i} \int_{\alpha} \frac{f'(z)}{f(z)} \, dz = n(f(\alpha), 0),
\]
where \(Z \) is the number of zeroes of \(f \) in \(I_{\alpha} \). \(P \) is the number of poles of \(f \) in \(I_{\alpha} \), and \(n(f(\alpha), 0) \) is the winding number of \(f(\alpha) \) around zero. Since the restriction \(f|_{\alpha} \) is one-to-one, the \(f(\alpha) \) cannot cross itself. Thus the winding number can at most be one (one if 0 is inside \(f(\alpha) \) and zero if 0 is not inside \(f(\alpha) \)). Therefore, \(Z = 0 \) or \(Z = 1 \). Thus \(f \) has at most one zero in \(I_{\alpha} \).

Finally, we consider the case when \(f \) has a zero \(z_0 \) on \(\alpha \). (to be continued...)

Complex 2.0 #13.7

Find the set of all possible orientation-preserving conformal maps from \(A = \{ z \in \mathbb{C} : 0 < \Im(z) < \pi \} \) to \(B = \{ z \in \mathbb{C} : \Im(z) > 0 \} \), and prove that no other maps are possible.

Proof. First, observe that for any fixed \(y \in (0, \pi) \), the straight horizontal line \(\{ t + iy : t \in \mathbb{R} \} \) gets mapped by \(f(z) = e^z \) to \(\{ e^t e^{iy} : t \in \mathbb{R} \} \), which is an open ray from the origin to \(\infty \) at angle \(y \).

Thus, since the map is \(1-1 \), \(f \) is an orientation-preserving conformal mapping of \(A \) to \(B \). Observe that the orientation-preserving conformal maps from \(B \) to itself are of the form
\[
h(z) = \frac{az + b}{cz + d},
\]
where \(a, b, c, d \in \mathbb{R} \) and \(ad - bc \) can be assumed to be 1. Thus, any map of the form \(h \circ f \) is an orientation-preserving conformal map from \(A \) to \(B \).

Conversely, given any orientation-preserving conformal map \(\phi : A \to B \), then \(\phi \circ f^{-1} : B \to B \) is an orientation-preserving conformal map from \(B \) to itself, so that \(\phi \circ f^{-1} \) must have the form of such an \(h \) above, but then \(\phi = h \circ f \) in the form we obtained before.

In summary, all orientation-preserving conformal maps from \(A \) to \(B \) are of the form
\[
F(z) = \frac{ae^z + b}{ce^z + d},
\]
with \(a, b, c, d \in \mathbb{R} \) and we may assume \(ad - bc = 1 \). \(\square \)
Remark: If the word “orientation-preserving” is deleted, we would need to include the possibility of the antiholomorphic maps, which have the form

$$G(z) = \frac{-ae^z + b}{-ce^z + d},$$

with $a, b, c, d \in \mathbb{R}$ and we may assume $ad - bc = 1$.

Complex 2.0 #14.1

Let

$$f(z) = \int_{-1}^{1} \frac{e^{-u^2}}{u - z} \, du.$$

(a) Show that $f(z)$ is analytic in $\mathbb{C} - [-1, 1]$.

(b) Show that $f(z)$ may be continued analytically across the open segment $(-1, 1)$.

(c) Show that the analytic continuations of f from above $(-1, 1)$ and from below $(-1, 1)$ are different. What is their difference on the cut $(-1, 1)$?

Proof. (a) Let $z_0 = x_0 + iy_0 \in \mathbb{C} \setminus [-1, 1]$. Observe that the integrand, as a function of $z = x + iy$, is smooth as a function of x and y. Further, its partial derivatives with respect to x and y are bounded and continuous and thus integrable when $z \in \mathbb{C} \setminus [-1, 1]$. Therefore, we may differentiate under the integral sign to evaluate

$$\frac{d}{dz} f(z) = \int_{-1}^{1} \frac{d}{dz} \left(\frac{e^{-u^2}}{u - z} \right) \, du = 0,$$

since $\frac{1}{u - z}$ is holomorphic in z. Therefore, f is holomorphic on $\mathbb{C} - [-1, 1]$.

(b) Observe that if C_0 is the upper half of the unit circle, oriented counterclockwise and if C denotes the closed oriented curve that is the union of C_0 and $[-1, 1]$, then the residue theorem yields

$$\int_{C} \frac{e^{-u^2}}{w - z} \, dw = \begin{cases}
2\pi i e^{-z^2} & z \in \mathcal{I}(C) \\
0 & z \text{ outside of } C,
\end{cases}$$

where $\mathcal{I}(C)$ denotes the interior of C. Thus,

$$f(z) = \int_{-1}^{1} \frac{e^{-u^2}}{u - z} \, du = \begin{cases}
2\pi i e^{-z^2} - \int_{C_0} \frac{e^{-w^2}}{w - z} \, dw & z \in \mathcal{I}(C) \\
- \int_{C_0} \frac{e^{-w^2}}{w - z} \, dw & z \text{ outside of } C
\end{cases}$$

Note that both the top and the bottom of the right hand side give two different analytic continuations of f to the inside of C, and note that in both cases the formula is valid at all points away from C_0. The upper formula gives a continuation from the upper half plane to points at or below $[-1, 1]$, and the lower formula gives a continuation from the lower half plane to points at or above $[-1, 1]$.

(c) From the formula above, the difference between the analytic continuations from below and above at the point $x \in [-1, 1]$ is $2\pi i e^{-x^2}$. \qedhere

Complex 2.0 #14.3

Let

$$F(z) = \int_{-\infty}^{\infty} \frac{e^{zx}}{1 + e^x} \, dx.$$

(a) Determine the set of z for which the integral converges. (b) Show that F can be analytically continued, and find the largest possible domain of its analytic continuation.
2. Real Analysis Practice Problems 2.0

Real 2.0 #2.4
Let a be a positive real number. Define a sequence (x_n) by

$$x_0 = 0, \quad x_{n+1} = a + x_n^2, \quad n \geq 0.$$

Find a necessary and sufficient condition on a in order that a finite limit $\lim_{n \to \infty} x_n$ should exist.

Proof. We have $x_0 = 0$, $x_1 = a$, $x_2 = a + a^2$. Clearly each x_j is positive. Note that initially (x_j) is strictly increasing. Also,

$$x_{n+1} - x_n = (a + x_n^2) - (a + x_{n-1}^2) = x_n^2 - x_{n-1}^2 = (x_n - x_{n-1})(x_n + x_{n-1}),$$

which is positive if $(x_n - x_{n-1})$ is positive. By induction $x_{n+1} > x_n$ for all n.

Next, suppose the limit of the sequence L exists. Then

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} (a + x_n^2),$$

so that $L^2 - L + a = 0$, so that $L = \frac{1 + \sqrt{1 - 4a}}{2}$, so that a necessary condition on a is that $0 < a \leq \frac{1}{4}$.

Now, if $0 < a \leq \frac{1}{4}$, then observe that $x_0, x_1 \leq \frac{1}{2}$. Then for $n \geq 1$, if $x_n \leq \frac{1}{2}$, then

$$x_{n+1} = a + x_n^2 \leq \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

By induction, $x_n \leq \frac{1}{2}$ for all n, and so (x_n) is a bounded increasing sequence and thus converges. Therefore, $0 < a \leq \frac{1}{4}$ is a necessary and sufficient condition. \[\square\]

Real 2.0 #5.3
Show that there exist constants a and b such that, for all integers $N \geq 1$,

$$\left| \sum_{n=1}^{N} \frac{1}{\sqrt{n}} - 2\sqrt{N} - a \right| < \frac{b}{\sqrt{N}}.$$

Real 2.0 #5.10
Let f and g be continuous functions on \mathbb{R} such that $f(x + 1) = f(x)$ and $g(x + 1) = g(x)$ for all $x \in \mathbb{R}$. Prove that

$$\lim_{n \to \infty} \int_{0}^{1} f(x) g(nx) \, dx = \int_{0}^{1} f(x) \, dx \int_{0}^{1} g(x) \, dx.$$

Proof. Note that

$$L_n = \int_{0}^{1} f(x) g(nx) \, dx = \frac{1}{n} \int_{0}^{n} f\left(\frac{y}{n} \right) g(y) \, dy = \sum_{k=1}^{n} \frac{1}{n} \int_{k-1}^{k} f\left(\frac{y}{n} \right) g(y) \, dy$$

Since f is continuous on $[0, 1]$, it is uniformly continuous, and thus for every $\varepsilon > 0$, there exists $\delta > 0$ such that $|x - y| < \delta$ and $x, y \in [0, 1]$ implies that $|f(x) - f(y)| < \varepsilon$. We choose $n \in \mathbb{Z}_{>0}$ such that $\frac{1}{n} < \delta$. Let

$$M_n = \sum_{k=1}^{n} \frac{1}{n} \int_{k-1}^{k} f\left(\frac{k}{n} \right) g(y) \, dy.$$
Then
\[|L_n - M_n| = \left| \sum_{k=1}^{n} \frac{1}{n} \int_{k-1}^{k} \left(f \left(\frac{y}{n} \right) - f \left(\frac{k}{n} \right) \right) g(y) \, dy \right|
\]
\[\leq \sum_{k=1}^{n} \frac{1}{n} \int_{k-1}^{k} \left| f \left(\frac{y}{n} \right) - f \left(\frac{k}{n} \right) \right| |g(y)| \, dy \leq \sum_{k=1}^{n} \frac{1}{n} \int_{k-1}^{k} \varepsilon |g(y)| \, dy
\]
\[\leq \varepsilon \int_{0}^{1} |g(y)| \, dy.
\]
This can be made arbitrarily small by choosing \(n \) large enough. On the other hand,
\[M_n = \sum_{k=1}^{n} \frac{1}{n} \int_{k-1}^{k} f \left(\frac{k}{n} \right) g(y) \, dy
\]
\[= \sum_{k=1}^{n} \frac{1}{n} f \left(\frac{k}{n} \right) \int_{k-1}^{k} g(y) \, dy = \left(\sum_{k=1}^{n} \frac{1}{n} f \left(\frac{k}{n} \right) \right) \int_{0}^{1} g(y) \, dy.
\]
But
\[\sum_{k=1}^{n} \frac{1}{n} f \left(\frac{k}{n} \right) \rightarrow \int_{0}^{1} f(x) \, dx
\]
as \(n \rightarrow \infty \) (a right Riemann sum), so that \(\lim_{n \rightarrow \infty} M_n = \int_{0}^{1} f(x) \, dx \int_{0}^{1} g(x) \, dx \). Then, by the above, \(\lim_{n \rightarrow \infty} L_n \) also exists and
\[\lim_{n \rightarrow \infty} L_n = \lim_{n \rightarrow \infty} M_n = \int_{0}^{1} f(x) \, dx \int_{0}^{1} g(x) \, dx.
\]
\[\square
\]
Real 2.0 #6.6

Let
\[F(g)(t) := \int_{0}^{\infty} \exp(-tx)g(x) \, dx.
\]

(a) Prove that if \(g \) is continuous and bounded on \((0, \infty)\), then \(F(g) \) is continuous and bounded on \((1, \infty)\).

(b) Prove that if \(g \) is continuous and bounded on \((0, \infty)\), then it is not necessarily true that \(F(g) \) is continuous and bounded on \((0, \infty)\).

(c) Prove that if \(g \) is continuous, bounded and improper Riemann integrable on \([0, \infty)\), then \(F(g) \) is continuous, bounded and improper Riemann integrable on \([1, \infty)\).

(d) Prove or disprove the converses of (a) and (c).

(e) Show that even if \(g \) is continuous, bounded and improper Riemann integrable on \([0, \infty)\), then \(F(g) \) is not necessarily Riemann integrable on \([0, \infty)\).

Real 2.0 #11.1

Discuss the number of solutions in \((x, y)\) to
\[u = x + y^2
\]
\[v = y + xy
\]
for \((u, v)\) sufficiently close to \((0, 0)\).
Proof. Let \(f(x, y) = (x + y^2, y + xy) \). Suppose that \(f(x, y) \) is very close to \((0, 0)\), so there exists a very small \(\varepsilon > 0, \varepsilon < 0.01 \) such that \(|x + y^2| < \varepsilon \) and \(|y + xy| < \varepsilon \). In particular, this means that \((x, y)\) is between the parabolas \(x = -y^2 - \varepsilon \) and \(x = -y^2 + \varepsilon \) and is within the hyperbolic boundaries of \(|y| |1 + x| = \varepsilon \). In particular, this means that \((x, y)\) is within a \(2\varepsilon\)-ball of one of the three intersection points of the parabola \(x = -y^2 \) and the double line \(x(y + 1) = 0\), i.e. the points in \(f^{-1}\{0, 0\} = \{(-1, 1), (-1, -1), (0, 0)\}\). (To see the computation: if \(f(x, y) = (0, 0)\), then \(x + y^2 = 0, y + xy = 0\). Then \(y = 0\) or \(x = -1\). In the first case, \(x = 0\). In the second case, \(y = \pm 1\).) We will choose \(\varepsilon \) to be very small, very soon. What we know now is that if \(f(x, y) = (u, v) \) is within \(\varepsilon \) of \((0, 0)\), then \((x, y)\) is within \(2\varepsilon\) of one of the three points.

Observe that \(f \) is \(C^\infty \). We compute
\[
f'(x, y) = \begin{pmatrix} 1 & 2y \\ y & x + 1 \end{pmatrix},
\]
and
\[
f'(0, 0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad f'(-1, 1) = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}, \quad f'(-1, -1) = \begin{pmatrix} 1 & -2 \\ -1 & 0 \end{pmatrix},
\]
all of which have nonzero determinants and so are invertible. By the inverse function theorem, there exists a neighborhood \(U_1 \) of \((0, 0)\) and a neighborhood \(V_1 \) of \((0, 0)\) such that \(f : U_1 \to V_1 \) is a homeomorphism and that \((f|_U)^{-1} : V_1 \to U_1\) is differentiable and continuous. Similarly, there exists a neighborhood \(U_2 \) of \((-1, 1)\) and a neighborhood \(V_2 \) of \((0, 0)\) such that \(f : U_2 \to V_2 \) is a homeomorphism and that \((f|_U)^{-1} : V_2 \to U_2\) is differentiable and continuous, and there exists a neighborhood \(U_3 \) of \((-1, -1)\) and a neighborhood \(V_3 \) of \((0, 0)\) such that \(f : U_3 \to V_3 \) is a homeomorphism and that \((f|_U)^{-1} : V_3 \to U_3\) is differentiable and continuous.

Next, choose \(\varepsilon > 0 \) such that the \(2\varepsilon\)-balls around \(f^{-1}\{0, 0\}\) are contained inside \(f^{-1}\{U_1 \cap V_2 \cap V_3\}\). Then we have shown that if \((u, v)\) is in the ball of radius \(\varepsilon \) of \((0, 0)\), there exist exactly 3 points in \(f^{-1}\{(u, v)\}\). \(\square\)

Real 2.0 #11.4
Let \(A \subseteq \mathbb{R}^3 \) be the set defined by \(x^3y + y^3z^2 - 2xz^4 = 2 \). Prove or disprove that there exists \(\delta > 0 \) and a curve \(\alpha : (-1 - \delta, -1 + \delta) \to A \) such that \(\alpha(t) = (t, g(t), h(t)) \) with \(g \) and \(h \) differentiable.

Real 2.0 #13.3

The function \(h \) is periodic of period 4 and satisfies
\[
h(t) = \begin{cases}
1, & 0 \leq t < 1 \\
0, & 1 \leq t < 4
\end{cases}
\]

(a) Find the corresponding Fourier series for \(h \).
(b) Prove or disprove that the Fourier series converges uniformly to \(h \) on \([1, 2]\).
(c) Prove or disprove that the Fourier series converges uniformly to \(h \) on \([2, 3]\).

Proof. (a) The Fourier series of \(h \) is
\[
H(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos \left(\frac{n\pi}{2} t \right) + \sum_{n=1}^{\infty} b_n \sin \left(\frac{n\pi}{2} t \right),
\]
and the coefficients satisfy
\[
a_0 = \frac{1}{4} \int_0^4 h(t) \, dt = \frac{1}{4};
\]
\[
a_n = \frac{1}{2} \int_0^4 h(t) \cos\left(\frac{n\pi}{2} t\right) \, dt
= \frac{1}{2} \int_0^1 \cos\left(\frac{n\pi}{2} t\right) \, dt
= \begin{cases}
\frac{(-1)^{k}}{n\pi} & n = 2k + 1 \text{ for } k \in \mathbb{Z}_{\geq 0}; \\
0 & n = 2\ell \text{ for } \ell \in \mathbb{Z}_{\geq 1}
\end{cases};
\]
\[
b_n = \frac{1}{2} \int_0^4 h(t) \sin\left(\frac{n\pi}{2} t\right) \, dt
= \begin{cases}
\frac{1}{n\pi} & n = 2k + 1 \text{ for } k \in \mathbb{Z}_{\geq 0} \\
\frac{2}{n\pi} & n = 2(2\ell + 1) \text{ for } \ell \in \mathbb{Z}_{\geq 0} \\
0 & n = 2(2m) \text{ for } m \in \mathbb{Z}_{\geq 1}
\end{cases}.
\]

(b) Observe that if we let
\[
S_N(t) = a_0 + \sum_{n=1}^N a_n \cos\left(\frac{n\pi}{2} t\right) + \sum_{n=1}^N b_n \sin\left(\frac{n\pi}{2} t\right),
\]
Then this function evaluated at \(x = 1 \) is \(S_N(1) = \frac{1}{2} \) (the average of the one sided limits). If \(S_N \) did converge uniformly to \(h \), then the limit function would be continuous, and then \(S_N(1) \) would have to converge to 0, a contradiction. Thus \(S_N \) does not converge to \(h \) uniformly on \([1, 2] \).

(c) Because \(h \) is continuously differentiable on the interval \([2, 3] \), the convergence is uniform there. \(\square \)

Additional Problem

Let \(f : \mathbb{R} \to \mathbb{R} \) satisfy

1. \(f \) is continuous on \([0, \infty) \).
2. \(f' \) (x) exists for all \(x \geq 0 \).
3. \(f (0) = 0 \).
4. \(f' \) is increasing.

For \(x > 0 \), define \(g(x) = \frac{f(x)}{x} \). Prove that \(g \) is increasing.

Proof. Observe that \(g' \) exists on \((0, \infty) \), and
\[
g'(x) = \frac{f'(x)x - f(x)}{x^2}.
\]
So it suffices to show that \(f'(x)x - f(x) \geq 0 \). Note that by the FTC \(f(x) = \int_0^x f'(t) \, dt \leq xf'(x) \) since \(f' \) is increasing. Thus,
\[
f'(x)x - f(x) \geq f'(x)x - xf'(x) = 0.
\]

Alternately, we could use the mean value theorem: For any \(x > 0 \), there exists \(c \) such that \(0 < c < x \) and
\[
f'(x) \geq f'(c) = \frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x}.
\]
Then since \(x > 0 \), we have \(xf'(x) \geq f(x) \), so \(f'(x)x - f(x) \geq 0 \). \(\square \)

Additional Problem

Prove that
\[
\lim_{t \to \infty} \int_1^2 \frac{\sin(tx)}{x^2\sqrt{x - 1}} \, dx = 0.
\]
Proof. The integral is
\[\int_{1}^{2} \frac{\sin(tx)}{x^2 \sqrt{x-1}} \, dx \]
\[\square \]

Additional Problem
Let \(f : [0, 1] \to \mathbb{R} \). Suppose that

1. \(f \in C^\infty [0, 1] \)
2. \(|f(1)| \geq |f(0)|\)

Prove that either there exists \(x \in (0, 1) \) such that \(f(x) \) and \(f'(x) \) have the same sign, or \(f \) is constant.

Proof. Observe that the given \(f(x) \) satisfies \(g(x) = f(x)^2 \in C^\infty [0, 1] \), \(g(1) \geq g(0) \). We see by the mean value theorem that there exists \(c \in (0, 1) \) such that \(g'(c) = g(1) - g(0) \). If \(g(1) > g(0) \), we are done, because then \(g'(c) = 2f'(c) f(c) > 0 \), and so \(f \) and \(f' \) have the same sign at \(c \). If \(g(1) = g(0) \), then \(g'(c) = 0 \). If there is no point \(x \in (0, 1) \) at which \(g'(x) > 0 \), then \(g'(x) \leq 0 \) for all \(x \in (0, 1) \). If there exists \(x \in (0, 1) \) such that \(g'(x) < 0 \), then in fact this is true for an interval around \(x \), so that
\[g(1) - g(0) = \int_{0}^{1} g'(x) < 0, \]
a contradiction, so in this case we must have \(g'(x) = 0 \) for all \(x \). Therefore there exists \(c \in (0, 1) \) such that \(g'(c) = f(c) f'(c) > 0 \), or else \(g(x) \) is constant (and thus \(f(x) \) is constant).

\[\square \]

Additional Problem
Does there exist a continuous function \(f \) such that

1. \(f : (0, 1) \to [0, 1] \) is onto?
2. \(f : [0, 1] \to (0, 1) \) is onto?
3. \(f : (0, 1) \to [0, 1] \) is 1-1 and onto?
4. \(f : [0, 1] \to (0, 1) \) is 1-1 and onto?

Proof. (1) yes. eg. let \(f(x) = \frac{1}{2} + \frac{1}{2} \sin(2\pi x) \).
(2) no. Since the continuous image of a compact set is compact, \(f([0,1]) \) must be compact, but \((0,1)\) is not compact.
(3) no. Suppose you have such and \(f \). Then there exist \(a, b \in (0, 1) \) such that \(f(a) = 0, f(b) = 1 \). Without loss of generality, suppose \(a < b \). By the intermediate value theorem, for all \(x \in (0, 1) \), there exists \(y \in (a, b) \) such that \(f(y) = x \). Thus, \(f : (a, b) \to (0, 1) \) is onto. Thus, \(f \) cannot be 1-1, since for any \(z \in (0, a), f(z) = f(x) \) for some \(x \in [a,b] \).
(4) no. Same reason as (2).

\[\square \]

3. Algebra Practice Problems 2.0

Algebra 2.0 #2.2
Prove that any group \(G \) of order 6 is isomorphic to \(Z_6 \) or \(S_3 \).

Proof. (Case 1) If \(G \) is abelian, then by the FTFTGAG, \(G \cong Z_6 \) (since \(6 = 2 \cdot 3 \) and \(\gcd(2,3) = 1 \), so \(Z_6 \cong Z_2 \times Z_3 \).
(Case 1') If \(G \) has an element of order 6, then it is cyclic and is therefore isomorphic to \(Z_6 \).
(Case 2) Otherwise, \(G \) must have elements of order 1 (the identity), so every other element has order 2 or 3, by Lagrange’s theorem. By Cauchy’s Theorem, there exist elements of order two and three. Let \(H \) be the subgroup of generated by an element \(g \) of order three. This subgroup is normal since \([G:H] = \frac{|G|}{|H|} = 2\). Let \(a \in G \) such that \(a^2 = e \), so \(a \notin H \) since all elements of \(H \) have order
1 or 3. Then $aH \neq H$. Since $G = H \cup aH$, the elements of G are \{e, g, g^2, a, ag, ag^2\}. The only multiplications that are not yet determined are aga, $agag$, $agag^2$, ag^2a, ag^2ag, ag^2ag^2, etc.

aga can’t be e because ga can’t be $a = a^{-1}$.

Cases: (A) If $aga = g$, then $ga = ag$, and the group is abelian. (contradiction to Case 2 assumption).

(B) so we must have $aga = g^2$. Then $agag = e$, $agag^2 = g$, $ag^2a = agag = g^2g^2 = g$, $ag^2ag = g^2$, $ag^2ag^2 = g^2g = e$.

Also $ga = aaga = agg = a$, $gag^2 = ag$, $g^2a = g(ag^2) = ag$, $g^2ag = ag^2$, $g^2ag^2 = a$.

To prove $G \cong S_3$, we determine a map $\phi : G \rightarrow S_3$ by $\phi(g) = (1, 2, 3)$, and $\phi(a) = (1, 2)$. We check that

\[
\phi(aga) = \phi(a)\phi(g)\phi(a) = (1, 2)(1, 2, 3)(1, 2) = (1, 3, 2) = (1, 2, 3)^2 = \phi(g)^2 = \phi(g^2).
\]

Therefore, ϕ is a homomorphism. Since S_3 is generated by $(1, 2)$ and $(1, 2, 3)$, ϕ is onto, and since $|G| = |S_3|$, ϕ is bijective and thus and isomorphism.

\[\square\]

Algebra 2.0 #6.2

Let R be a ring with identity, and let u be an element of R with a right inverse. Prove that the following conditions on u are equivalent:

1. u has more than one right inverse;
2. u is a left zero divisor;
3. u is not a unit.

Proof. (1)\Rightarrow(2). If x and y are right inverses of u, and if 1 is the multiplicative identity. If $ux = uy = 1$ then $ux - uy = 0$, so $u(x - y) = 0$. So if $x \neq y$ then u is a left zero divisor.

(2)\Rightarrow(1). Let $ux = 1$, and suppose that $uz = 0$ for some $z \neq 0$. Then $1 = ux + uz = u(x + z)$, so u has more than one right inverse.

(2)\Rightarrow(3). Let u be a left zero divisor, so there exists $z \neq 0$ such that $uz = 0$. So if there exists v such that $vw = vu = 1$, then $v(uz) = (vu)z = 1z = z$ but $v(uz) = v(0) = 0$, a contradiction. So u is not a unit.

(3)\Rightarrow(2). Suppose that u is not a unit but has a right inverse x. Then $ux = 1$, so $uxu = u$, or $uxu - u = 0$. Then $u(xu - 1) = 0$. But $xu - 1$ is nonzero because otherwise x would be the inverse of u. Thus, u is a left zero divisor. \[\square\]