Characteristics of the Cobb-Douglas Production Function

Overview: In this problem set you will demonstrate the many desirable characteristics of the Cobb-Douglas production function. The Cobb-Douglas production function, for a model of the economy with only Capital (K) and Labor (L) as inputs is:

\[Y = K^{\alpha} \times L^{(1-\alpha)} \quad \text{Where } 0 < \alpha < 1 \]

For this problem set, assume that \(\alpha = 0.4 \)

Instructions

1. Demonstrate that the Cobb-Douglas production function is a constant returns to scale (CRS) production function. Do this by:
 a. Calculating \(Y \) when \(K = 20 \) and \(L = 40 \)
 b. Calculating \(Y \) when \(K = 40 \) and \(L = 80 \)
 c. Calculating \(Y \) when \(K = 100 \) and \(L = 200 \)
 d. Explain what constant returns to scale is. Explain how your numbers demonstrate, or fail to demonstrate, that the Cobb-Douglas function is CRS.

2. Demonstrate that the Cobb-Douglas production function exhibits diminishing marginal productivity of labor. Do this by:
 a. Hold \(K \) constant at 10. Vary \(L \), in increments of 1 from 1 to 8. Calculate \(Y \) for each \(L \). Then calculate the added output per added unit of Labor, i.e. MPL. Fill in the chart below.

\[
\begin{array}{cccc}
K & L & Y & MPL = \frac{\Delta Y}{\Delta L} \\
10 & 0 & 0 & NA \\
10 & 1 & & \\
10 & 2 & & \\
10 & 3 & & \\
10 & 4 & & \\
10 & 5 & & \\
10 & 6 & & \\
10 & 7 & & \\
10 & 8 & & \\
\end{array}
\]
b. Explain what diminishing marginal productivity of labor is. Explain how your numbers demonstrate, or fail to demonstrate, that the Cobb-Douglas function exhibits diminishing marginal productivity of labor.

3. Demonstrate that the Cobb-Douglas production function exhibits diminishing marginal productivity of Capital. Do this by:
 a. Hold L constant at 10. Vary K, in increments of 1 from 1 to 8. Calculate Y for each L. Then calculate the added output per added unit of Labor, i.e. MPK. Fill in the chart below.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>K</td>
<td>Y</td>
<td>MPK = ΔY/ΔK</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Explain what diminishing marginal productivity of capital is. Explain how your numbers demonstrate, or fail to demonstrate, that the Cobb-Douglas function exhibits diminishing marginal productivity of capital.

4. Demonstrate that the Cobb-Douglas production function abides by Euler’s theorem. Do this by:
 a. Explain what Euler’s theorem is and how it applies to production function. In particular, list the conditions (CRS, etc.) required for Euler’s theorem to hold. The state the outcome (Y = something) according to Euler’s theorem.
 b. Let K = 100 and L = 100. Calculate Y.
 c. Calculate the Marginal product of labor (MPL). To do this calculate Y when K = 100 and L = 99. The added output when L increases to 100, calculated in part b, is the MPL.
 d. Calculate the Marginal product of capital (MPK). To do this calculate Y when K = 99 and L = 100. The added output when K increases to 100, calculated in part b, is the MPK.
 e. Calculate K×MPK + L×MPL. Use the MPL and MPK you calculated in c and d respectively. Use 100 for K, and 100 for L. Does this equal Y when K = 100 and L = 100?1

1 Note: your results may be off by a tiny bit because we calculated MPL and MPK based on discrete changes instead of using calculus.