1(25) Calds: Lact time
$1.3\left\{\begin{array}{l}\text { Trig functions } \\ \text { Radian measure }\end{array}\right.$
1.5 Exponential functions

For $\quad \rightarrow 0$, $f(x)=a^{x}$ is the exponertial function base a
Ex1: Eualuate $f(x)=2^{x}(a z 2)$
(a) $f(5)=2^{5}=32$
(b) $f(-3)=2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$
(d)

$$
\begin{aligned}
& \text { (c) } f(0)=1 \\
& \text { (d) } f(3 / 2)=2^{3 / 2}=\left(2^{3}\right)^{1 / 2}=8^{1 / 2} \\
& \text { (e) } f(-2 / 7)=2^{-3 / 1}=1
\end{aligned}
$$

$$
\frac{1}{2^{2 / 1}}=\frac{1}{\left(2^{2}\right)^{1 / 2}}=\frac{1}{4^{1 / 2}}=\frac{1}{\sqrt[7]{4}}
$$

Usizg: Laws of expon entials
For $a, b>0, x, 7$ real.
(1) $a^{x} a^{x}=a^{x+y}$
(2) $\frac{a^{x}}{a^{y}}=a^{x-y}$
(3) $\left(a^{x}\right)^{y}=\left(a^{y}\right)^{x}=a^{(x y)}$
(4) $a^{x} b^{x}=(a b)^{x}$
(5) $a^{x} / b^{x}=(a / b)^{x}$
(f) $f(\pi)=2^{\pi}$ ??
mo way to simplify, but

$$
\begin{aligned}
& \pi=3.1415926 \ldots \\
& 2^{3}=8<2^{\pi}<2^{9}=16 \\
& 2^{3.1}=2^{3 / 10}=\sqrt[10]{2^{31} \cong 8.5741} \\
& 2^{3.14}=2^{31100}=\sqrt[100]{2^{314} \cong 8.815}
\end{aligned}
$$

$$
2^{3.15}=2^{3.5 / .00}=\sqrt[100]{2^{315} \cong 8.87}
$$

tate a limiting valie as $x \rightarrow \pi$, exant value

$$
2^{x} \rightarrow 2^{\pi}
$$

Ex2 $27^{3 / 4} \cdot 3^{7 / 4}$

$$
\begin{aligned}
& \left(3^{3}\right)^{3 / 4} \cdot 3^{2 / 4}=1 \\
& 3^{9 / 4} \cdot 3^{2 / 4}=3^{9 / 4+7 / 4}=3^{4}=81
\end{aligned}
$$

Grupal for $f(x)=a^{x}$

(pupulatin) (radioactire)
Rmk: In Calc 1-3, Diff Eans usullay use base a ${ }^{e}$ Euler's bumber

$$
e=2.71828
$$

Khat is it?

1.6 Inverse funtions tomaw

Deth : A function $f: D \rightarrow Y$ is one-ro-onp (1-1) tanet if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ : whenevor $x_{1} \neq x_{2}$
Ex| (a) $f(x)=x^{2} \quad D=\mathbb{R}$

$f$ is rot $(-1$, ble
$1 \neq-1$
but
(b) $f(x)=2 x-2$
$f(1)=f(-1)$

(H) $f(x)=\sqrt{x} \quad 1)=[0, \infty)$


Notice: $f$ is $1-1 \Longleftrightarrow$ Ever horizontal line meets graph of $f$ in at wast one point (Htriizatal live test)
Beth: If $f: D \rightarrow Y$ is $(-1$, and $R=\{f(d) \mid d$ in $\Delta\}$ is range $f$ then Invest $f^{-1}: R \rightarrow D$
is defrued

$$
f^{-1}(b)=a \quad \Leftrightarrow f(a)=b
$$

ExA (Ex) serisited):
(a) $f(x)=x^{2}$ Las $n$

$$
\text { blc }+\sin x+1 \text {. }
$$

(b) $\quad f(x)=2 x-2$

Ravae is $\mathbb{R}$.
$f^{-1}$ earts :
How to fint it?

$$
\begin{aligned}
& f: \quad y=2 x-2 \\
& \therefore f-1: x=2 y-2 \\
& x+2=2 y \Rightarrow y=\frac{x+2}{2} \\
& =\frac{x}{2}+1 \\
& \text { cl } f(x)=\sqrt{x} \\
& 0=[0, \infty)
\end{aligned}
$$

$$
\begin{aligned}
& R=[0, \infty) \\
& y=\sqrt{x} \\
& x=\sqrt{y} \Rightarrow y_{x}=x^{2} \\
& x \geqslant 0
\end{aligned}
$$



Sketch reph et last 2 exapples:


In genad: guph of $f^{-1}=$
gruph if f refiosted thrugh

$$
\text { line } y=x
$$

$\operatorname{Dom} f=\operatorname{Ramae} f^{-1}$
Don $f^{-1}=$ Rance $f$
b|c $(x, y)$ on auph off
$(y, x)$ an arpph of $f^{-1}$
Ex2 (Very importart)
If $f(x)=a^{x}$ is exponential fur-ivan hase $a \neq 1$,
$f$ passes, harizartal live test

furcimen call-d logaritim
fruction hase a


$$
\begin{aligned}
& \text { Dum }=(0, \infty) \\
& \text { Rampe }=\mathbb{R}
\end{aligned}
$$

Special aly $a=e=2.71828$.

$$
\log _{e} x=\ln x=\frac{\text { natumal log }}{\text { funatin }}
$$

Invese properites:

$$
\int a^{\log a x}=x \quad x>0
$$

$$
\left[\begin{array}{ll}
\log _{a} a^{x}=x & \text { all } x \\
e^{\ln x}=x & x>0 \\
\ln e^{x}=x & \text { all } x
\end{array}\right.
$$

Algebarii puopertios $x, x>0$
(1) $\log x y=\log x+\log y$
(2) $\log \frac{x}{y}=\log x-\log y$
(3) $\log \frac{1}{x}=-\log x$
(4) $\log x^{p}=p \log x$

Cac-loter: logax is rot on calculator, but ox, bec cuse

$$
\log _{a} x=\frac{\ln x}{\ln x}
$$

why $y=\log a x \Leftrightarrow a^{y}=x$
take $\ln x$


Usage: Use inverse property to solve equation?
(a) $2^{x}=8 \Rightarrow x=3$
(b)

$$
\begin{aligned}
& 2^{x}=7 \Rightarrow \\
& \log _{2} 2^{x}=\log _{2} 7 \\
& x \log _{x \rightarrow 1} 2
\end{aligned}
$$

(c) $e^{x^{2}+2 x}=20$
lake en of busies

$$
x^{2}+2 x=\ln 20
$$

$$
\begin{aligned}
& x^{2}+2 x-\ln 20=0 \\
x & =\frac{-2 \pm \sqrt{4-4(-\ln 20)}}{2 \cdot 1} \\
= & \frac{-2 \pm \sqrt{4+4 \ln ^{2} 0}}{2} \\
= & \frac{-1 \pm \sqrt{1+\operatorname{sen} 20}}{2}
\end{aligned}
$$

(d) $\ln (x-1)-\ln (x+1)=3$

$$
\ln \left(\frac{x+1}{x+1}\right)=3
$$

expinortiale

$$
\begin{aligned}
& \frac{x-1}{x+1}=e^{3} \\
& x-1=(x+c) e^{3}=x e^{3}+e^{3} \\
& -\mathbb{U} \\
& -e^{3}-1=x e^{3}-x=x\left(e^{3}-1\right) \\
& x=\frac{-e^{3}-1}{e^{3}-1}
\end{aligned}
$$

$\ln (\underset{x-1<0}{ }$ so undefined no solution Trig functions are rot $1-1$


$$
\frac{\operatorname{racting} \arcsin x}{\frac{1}{\sin x}}+\left(\sin ^{-1} x\right)
$$

