Calc 1:
Contact info:
Text

$$
+1-83
$$

Calculator T1-84

Weckly Planner:
Overvien:
What is Calcalys?
Neuton: twol for physics

Example Instantaneous
velouth
A car accelerates town a track, it's distance is

feet
(A) What is a average speed precoly over the 5 seconds?

$$
\frac{220}{5}=47 \mathrm{ft} / \mathrm{sec}=30 \mathrm{mph}
$$

(B) what is the exact speed after 2 se cones?

Cot Hardor

Guni

tes
(1) oug speed $[1,2]=\frac{35,2-8,8}{2-1}=$ $26.4 \mathrm{ft} / \mathrm{sec}$
(2) aus) geed $[2,3]=\frac{79.2 \cdot 352}{3-2}=$ $49 \mathrm{ft} / \mathrm{sec}$

$$
26^{4} 7 \mathrm{flec}<\sum_{\text {ped }}^{\text {peat }}<44 \mathrm{ff} / \mathrm{sec}
$$

More data: At time $t=2.1$, distance is 38.808 ft .
(3) aug speed $[2,2,1]=$

$$
\frac{38.808-35.2}{.1}=\frac{3.608}{.1}=
$$

$36.08 \mathrm{ft} / \mathrm{sec}$

$$
26.4<E S<36.08
$$

Here's all lath :

$$
d=8.8 t^{2}
$$

Nov cam rake truly
acc Uprate estimate:
for $\Delta t>0$,

$$
\begin{aligned}
& \frac{8.8\left(Y-\left(Y-4 \Delta t+\Delta t^{2}\right)\right)}{\Delta t} \\
& \frac{8.8\left(+4 \Delta t-\Delta t^{2}\right)}{\Delta t}= \\
& \frac{8.8\left(4 \Delta t-(\Delta t)^{2}\right)}{\Delta t}=8.8(4-\Delta t) \\
& 8.8(9-\Delta t)<E S<8.8(4+\Delta t) \\
& \text { al } \Delta t>0 \\
& 35.2-8.81 \Delta t<E S<35.2+8.8 \Delta t \\
& a s \Delta t \rightarrow 0 \\
& \text { Lits } \rightarrow 352 \\
& \text { Rits } \rightarrow 3.5 .2
\end{aligned}
$$

(Futhes if krow sanet speed ut each tive, can estirate/ capprte distance traveled.

Gourse OUMire:
(1) Furboas b Geaphs (precale)
(2) Limits (lartstep
(3) Derivatives (exactspead)
(7) Applications ($\begin{aligned} & \text { rath min } \\ & \text { pundems } \\ & \text { akphs }\end{aligned}$
(5) Intequation (exqet distanc)

Chl: Functions 4 greaphs

Deth: A function f from a set D (domain) to a $s-t$ Y (rarest) 13 a vole $x \in D$ assigning ouch $\frac{x \text { (in) } D}{y \text { (in } Y}$ to exactly one y ${\underset{y}{y \in Y}}_{y \in y}$

Notation $y=f(x)$
Ex| $D=\mathbb{R}, y=\mathbb{R}$

$$
\left.\begin{array}{l}
f(x)= \begin{cases}2 & x<0 \\
0 & x=0 \\
1 & x>0\end{cases} \\
f(-5000)=2
\end{array} \quad f(100)=1\right)
$$

the araph of f is

$$
\begin{aligned}
& \text { he aranh of } 5(x, y) \mid y=f(x)\}^{\prime} \text { in } \mathbb{R}^{2}
\end{aligned}
$$

Ex3 $f(x)<\sqrt{4-x^{2}}$
$\sigma=\mathbb{R} \quad D=[-2,2]$
$S_{>}$" $f(y)^{\prime \prime}$ dafinad

Straight lives:
The shope of tae line betwean

$$
\begin{aligned}
& l_{1}=\left(x_{1} \text { zap }\right) \text { ard } l_{2}=\left(x_{2} / y_{2}\right) \\
& 13 \\
& m=\frac{y_{2}-y_{1}}{y_{2}-x_{1}}=\frac{\Delta y}{\Delta x}
\end{aligned}
$$

$k \times 1$

Two equations for hrs
(A) If a hive has slope m and 4 ait is b, equation: $y=m x+b$

Ex

$y=2-2 / 3 x$
(B) polnt-slape form

If slope is m
pont on line is $P=\left(x_{1}, y_{1}\right)$
equation: $\quad y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{array}{r}
\text { InEx), } \quad \begin{array}{c}
P=(6,8) \\
m=3
\end{array} \\
y-y=3(x-6) \\
y-4=3 x-18 \\
y=3 x-14
\end{array}
$$

Slopes: I/
(1) Parallel lines have same slope
(2) Perpendicular lines

$$
m_{1} m_{2}=-1 m_{2}=\frac{-1}{m_{1}}
$$

E-3 It L is $3 y=3 x-14$
(a) Find eau. If line $I I$ to L though $(2,1)$

$$
\begin{aligned}
& m=3 \\
& y(-1)=3(x-2)=3 x-6 \\
& y=3 y-5
\end{aligned}
$$

(b) Find $\ln \mathrm{i} e 1$ to L through $(8,0)$

$$
m=-1 / 3
$$

$$
\begin{aligned}
y-0 & =-\frac{1}{3}(x-8) \\
y & =-\frac{1}{3} x+8 / 3
\end{aligned}
$$

Ex 1 Where toes the live

$$
\begin{array}{r}
x=x^{2}-4 x+4 \\
x^{2}-5 x-500 \begin{array}{r}
0=x^{2}-5 x+4 \\
(x-1)(x-4)
\end{array} \\
x=114 \\
y=-12 \\
(1,-1) \quad \begin{array}{l}
4,2)
\end{array}
\end{array}
$$

