2/9/Calc) Exam 1 Thursday

$$
\text { Last time }\left\{\begin{array}{l}
\lim _{x \rightarrow c} f(x)=+\infty /-\infty \\
\lim _{x \rightarrow+\infty} f(-\infty
\end{array}\right.
$$

\$3.1) The stope of the curve $y=f(x)$ at $P=\left(x_{0}, f\left(x_{0}\right)\right.$

$$
15 m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

"Difference quotient"
Tangent line to $y=f(x)$ ot P is the line through P win slope m

Ex) Find the tangent line of to $y=x=f(x) \frac{p=(2,-2 / 3)}{x-5}$ at
Need stope

$$
\begin{aligned}
& m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+\lambda\right)-f\left(x_{0}\right)}{h}= \\
&=\lim _{h \rightarrow 0} \frac{\frac{f(2+h)-f(2)}{h}=}{h}= \\
&=\lim _{h \rightarrow 0} \frac{\frac{2+h}{(2+h)-5}-(-2 / 3)}{h}= \\
& \lim _{h \rightarrow 0} \frac{3(2+h}{3-3}+\frac{2}{3}(h-3) \\
&h-3) \\
& \lim _{h \rightarrow 0} \frac{3(2+\lambda)+2(h-3)}{3(h-3)}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{6+3 h+2 h-6}{h \cdot 3(h-3)}= \\
& \lim _{h \rightarrow 0} \frac{5 k}{k \cdot 3 \cdot(h-3)}= \\
& \lim _{h \rightarrow 0} \frac{5}{3(h-3)}=-5 / 9=m
\end{aligned}
$$

Tangent line $\quad P \equiv(2,-2 / 3)$

$$
\begin{aligned}
& y-(-2 / 3)=-5 / 9(x-2) \\
& y=-5 / 9 x+10 / 9-2 / 3 \\
& =-5 / 9 x+4 / 9
\end{aligned}
$$

Other language: $m=$ slope ut cure is also called he derivative of f ot λ_{g} dented $f^{\prime}\left(x_{0}\right)=m$ Importance in Physics/ Applications

If $t=$ time and $f(t)$ represents a physical quantity (position of a moving, volume, areas weight), then $f^{\prime}\left(t_{0}\right)$ is the rate of change of $f(t)$ vim respect to forme.
Ex If a curdle las diameter $d=10+4 t$ inches for $t \geqslant 0$ (t in seconds)

(a) Itov thst is radies of circle in areasing at $t=10 \mathrm{sec} ?$
(b) How tust is area of circle increasing?
(a) $r(t)=$ radices at time $t_{\text {, }}$

$$
\begin{aligned}
& \left(f_{1-1} r^{\prime}(10)=? ?\right) \\
& r(t)=\frac{d}{2}=\frac{10+4 t}{2}=5+2 t \\
& r^{\prime}(10)=\lim _{h \rightarrow 0} \frac{r(10+2)-r(10)}{h}= \\
& \lim _{h \rightarrow 0} \frac{5^{2}+2(10+h)-(5+2(10))}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h}=\lim _{h \rightarrow 0} 2=2 \text { in } / \mathrm{sec}
\end{aligned}
$$

(b) Area:

$$
\begin{aligned}
A(t) & =\pi(r(t))^{2}= \\
& =\pi(5+2 t)^{2}
\end{aligned}
$$

Wart:

$$
\begin{aligned}
& A^{\prime}(10)= \\
= & \lim _{h \rightarrow 0} \frac{(A(10+2)-A(10)}{h} \\
= & \frac{\pi(5+2(10+h))^{2}-\pi(5+2(10))}{h} \\
= & \lim _{h \rightarrow 0} \pi\left(25+20\left(10^{2}+h\right)+4(10+2)^{2}\right) \\
= & \frac{-\pi\left(25+20(10)+4(10)^{2}\right)}{h} \\
= & \lim _{h \rightarrow 0} \pi\left(20 h+4\left(100+20 h+h^{2}\right)\right) \\
& \frac{-\pi 4(100)}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\pi\left(20 h+80 h+4 h^{2}\right)}{h)^{0}} \\
& =\lim _{h \rightarrow 0} \frac{\pi(20+80+4 h)^{0}}{1} \\
& =\lim _{h \rightarrow 0} 100 \pi \mathrm{k} h \mathrm{~s} / \mathrm{ser} .
\end{aligned}
$$

