2/6/Calal HW 263, Quaz5

$$
\lim _{x \rightarrow-4} f(x)=4
$$

$$
\lim _{x \rightarrow-2} f(x)=\text { DNE }-2 \text { diff } 4 \text { ades } \begin{aligned}
& \text { as } x \rightarrow-2
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} f(x)=0
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 2} f(x)=\text { DNE lef } y \rightarrow \infty \\
& \lim _{x \rightarrow 4} f(x)=-2
\end{aligned}
$$

Table $\lim _{x \rightarrow 0}(1-2 x)^{1 / x}=1350$
l give values of x close too from bulla sides

$$
\begin{aligned}
& \text { Remark } \\
& \lim _{x \rightarrow 0}(1-2 x)^{1 / x}=\lim _{x} \\
& \lim _{x \rightarrow 0}(1+x)^{4 x}=e \quad 4=-2 x \\
& \lim (1+u)^{1 / \frac{1}{2} u}= \\
& \lim _{u \rightarrow 0}(1+w)^{1 / u(-2)}=\frac{1}{e^{2}}
\end{aligned}
$$

Lest time
Den f continuous at $x=c$ if $\operatorname{Fim}_{x \rightarrow c} f(x)=f(c)$
f cont iryins on an enteral if out, at each pt in
$\underline{V}^{\text {(suall), }}$

no breaks/holes in graph.
Roughly speading
Ary function created from basic functions like polpromid
tria, invease, exponatiad, logosthm
E+1

$$
\text { (a) } f(x)=\frac{\sqrt[3]{\sec ^{2} x+\ln (\tan x+5)+x^{3}}}{\sqrt{1000-x^{2}}}
$$

conturaos an torain f,
(messy to compute it)
(domain complicated)
(b) $y=f(x)=\operatorname{ls}(\sin x)$
 need $\sin x>0$

Dowaim $\sin >0=$

$$
\cdots \cup \frac{(0, \pi)}{\bigcup_{n \in \mathbb{Z}}(2 n \pi,(2 n+1) \pi)} \frac{(2 \pi, 3 \pi) \cup(4 \pi, 5 \pi)}{}
$$

(c) $f(x)=\frac{2 x}{x^{2}-7 x}=\frac{2 x}{x(x-7)}$

Dumain: $x \neq 0,7$ is,

$$
(-\infty, 0) \cup(0,7) \cup(7, \infty)
$$

So $f(x)$ is dseort at $c=0,7$

$$
\begin{aligned}
& c=0: \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{2 x}{x(x-7)} \\
& \lim _{x \rightarrow 0} \frac{2}{x-7}=-217 \\
& c=7 \lim _{x \rightarrow 7} \frac{2}{x-7}=D N E
\end{aligned}
$$

A discontinuity $C_{1 s}$ re rovails if $\lim _{x \rightarrow c} f\left(x_{x}=\right.$ exasts

Ex $\quad f(x)=\arcsin \left(\frac{x}{20}\right)-1$

$y=\arcsin x \quad-20 \leq x \leq 20$
so Contiums on $[-20,20]$

Note We vill consider fuxt to be continus on $[a, b]$ if $\lim _{x \rightarrow b^{-}} f(x)=f(b)$ and $\lim _{x \rightarrow a^{+}} f(x) f(a)$

Remork: $\lim _{x \rightarrow \mathbb{D}^{c}} f(x)=L$

$$
\lim _{x \rightarrow c^{+}} f(x)=L \text { and } \lim _{x \rightarrow c^{-}} f(x)=L
$$

s, $f(x)$ is continuers at cif

$$
\left.\begin{array}{c}
\lim _{x \rightarrow c^{-}} f(x) \\
f(c) \\
\lim _{x \rightarrow c^{+}} f(x)
\end{array}\right\} \text { all are } \begin{array}{r}
\text { equal }
\end{array}
$$

Ex3 for hicb salves C is $f(x)$ discortinnous atc?

$$
f(x)= \begin{cases}\frac{1}{e^{x}-5} & x>0 \\ -1 / 4 & x=2\end{cases}
$$

$$
\left(\frac{|x|}{x(x+4)} \quad x<0\right.
$$

3 canes:

$$
x>0 \quad f(x)=\frac{1}{e^{x}-5}
$$

disc where $e^{x}-5=0 \Rightarrow$

$$
\begin{aligned}
& e^{x}=5 \Rightarrow x=\ln 5 \\
& x=\ln \left(e^{x}\right)=\ln 5 \\
& c<0 \quad f(x)=\frac{|x|}{x(x+4)}=\frac{-x}{x(x+4)} \\
& x_{x}=0 \\
& \text { dix at } c=-4 \\
& c=0 \quad \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{1}{e^{x}-5}=-\frac{1}{4} \\
& f(0)=-1 / 4
\end{aligned}
$$

$$
\begin{gathered}
\lim _{x \rightarrow 0^{-}} f(x)= \\
\lim _{x \rightarrow 0^{-}} \frac{-x}{x(x+4)}=\lim _{x \rightarrow 0^{-}} \frac{-1}{(x+4)}= \\
\text { catatc=0} \\
\text { Ans disc of } f(x)=c=\ln 5 \\
\{-4, \ln 5\}
\end{gathered}
$$

Ex 3 For which rumberel a 13

$$
q(x)=\left\{\begin{array}{rl}
x^{2} & x<3 \\
a^{2} x & x \geqslant 3
\end{array}\right.
$$ continues for all x in \mathbb{R} ?

$a=0$

$$
a=1
$$

Note For any a \quad,

$$
b / c \quad q=x^{2}
$$

$g(x)$ court on $(3, \infty)$ le $q=a^{2} x$
Just need to check $c=3$

$$
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} x^{2}=9
$$

$$
\begin{aligned}
& f(3)= \\
& \left.\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} a^{2} x=3 a^{2}\right) \\
& \text { need } \\
& \left\{=3 r^{2}\right. \\
& a^{2}=3 a= \pm \sqrt{3}
\end{aligned}
$$

Exy For what valves a, b is $h(x)$ costings for all x

$$
h(x)= \begin{cases}\frac{\sin 7 x}{x} & x<0 \\ x=\frac{a x+b}{a x} & 0 \leq x \leq 2 \\ x^{2} & x>2\end{cases}
$$

$h(x)$ continues at all

$$
c=0: \quad c \neq 0,2 \quad \lim _{x \rightarrow 0^{-}} h(x)=\lim _{x \rightarrow 0^{-}} \frac{\sin 7 x}{x}=7
$$

$h(0)$

$$
\lim _{x \rightarrow 0^{+}} h(x)=\lim _{x \rightarrow c^{+}} a+b=b
$$

Ned $2 a+h=4$
\rightarrow

$$
a=-3 / 2 b=7
$$

$$
\begin{aligned}
& b=7 \\
& 2 a+7=4 \Rightarrow \\
& 2 a=-3=-3 / 2
\end{aligned}
$$

$$
\begin{aligned}
& c=2 \\
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} a x+h=2 x+1 \\
& f(2)=2 a+b \\
& \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} x^{2}=4
\end{aligned}
$$

2.6 limits incolving influity

