4/5|Calc) Quiz 17

cars up $(-\infty, 0) \cup(4, \infty)$ town $(0,4)$
2.

Last tire: Optimization
Ex 1: A 10 ft . wive is cut into 2 pieces, one bent into a circle, other into a squat:
wherelshould wire te $c \uparrow$ to minimize total area (maximize total area)

(5)

$s=$ side of square

$$
\text { Area }=A=\pi r^{2}+s^{2}
$$

relation

$$
2 \pi r+4 s=10 f t
$$

corcm perim
$2 \pi r+4 s=10$

$$
\begin{gathered}
2 \pi r=10-4 s \\
r^{2} \frac{10-4 s}{2 \pi}=\frac{5-2 s}{\pi} \\
A=\pi\left(\frac{5-2 s}{\pi}\right)^{2}+s^{2} \\
= \\
\frac{(5-2 s)^{2}}{\pi}+s^{2} \\
0 \leqslant s \leqslant \frac{5}{2}=2.5
\end{gathered}
$$

fiut wax/ min of

$$
\begin{aligned}
& A=\frac{(5-2 s)^{2}}{\pi}+s^{2} \text { on }[0,5 / 2] \\
& \frac{d A}{d s}=\frac{1}{\pi} 2\left(\tilde{m}^{(s-2 s)^{\prime}(-2)}+(2 s)\right. \\
& \frac{c A}{d s}=\frac{-20+(8 s+2 \pi s)}{\pi}=0 \\
& s(8+2 \pi)=20 \\
& s=\frac{20}{8+2 \pi}=\frac{10}{4+\pi} \\
& \frac{d^{2} A}{d s^{2}}=\frac{1}{\pi}(8+2 \pi)>0 \\
& \frac{10}{4+\pi}
\end{aligned}
$$

men arears $S=\frac{10}{4+\pi}$
cut at $U_{s}=\frac{40}{4+1 \pi}=\begin{gathered}5.60099 \\ \mathrm{ft}\end{gathered}$

$\frac{\operatorname{mop} \operatorname{area}}{1} \quad s=0$.
put all was int cirde
§4.8 Antiderivatives
Deth: A function $F(x)$ is an antiderwative of $f(x)$
on an internal I if

$$
F^{\prime}(x)=f(x) \text { al } x \text { ir } I
$$

$E(x) \quad F(x)=x^{2}$ is contibricohe for $f(x)=2 x$
also

$$
\begin{aligned}
& f\left(x=x^{2}+5\right. \\
& x^{2}+100 \\
& x^{2}+(\quad C \text { constant }
\end{aligned}
$$

Rom: If $F(x)$ is cm antidervative for $f(x)$ on I_{1} then all antuderivales for $f(x)$ are $F(*)+C, \quad C$ constant

E-A Find all artidenvctikes of $f(x)=x^{4}$ on

$$
\begin{aligned}
I= & (-\infty, \infty): \\
F(x)= & \frac{1}{5} x^{5}+C \\
& C \text { constant }
\end{aligned}
$$

Notation: If $F^{\prime}(x)=f(x)$, on I we write
$E x^{3}$

$$
\int x^{4} d x=\frac{1}{5} x^{5}+c
$$

(a)

$$
\begin{aligned}
& \int 7 e^{x} d x=7 e^{x}+C \\
& \int \cos x d x=\sin x+C \\
& \int \sin x d x=-\cos x+C \\
& \int \frac{1}{1+x^{2}} d x=\arctan x+C \\
& \int e^{3 x} d x=\frac{1}{3} e^{3 x}+C
\end{aligned}
$$

