4/4) Cald: Quiz 16 ang 90%

$$
\begin{aligned}
& f^{\prime}=\frac{1}{5} x^{5}-3 x^{4}+\frac{20}{3} x^{3} \\
& f^{\prime \prime}=x^{4}-12 x^{3}+20 x^{2} \\
&=x^{2}\left(x^{2}-12 x+20\right) \\
& x^{2}(x-2)(x-10)=0 \\
& \frac{12 \pm \sqrt{144-4(1)(20)}}{2(1)}=2,10
\end{aligned}
$$

cons up $(-\infty, 2) \cup(10, \infty)$ dywn $\quad 2,10)$
3. $x=2,10$

Last time L'Hopitcls woe

$$
\begin{aligned}
& \lim _{x \rightarrow c} \frac{f(x)}{q(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{q^{\prime}(x)} \\
& \text { if } \frac{f(c)}{q(c)} \frac{0}{0}, \pm \infty \\
& \pm \infty
\end{aligned}
$$

Other forms:
(dea:

$$
\begin{aligned}
& \lim _{x \rightarrow c} \underset{\substack{1 \\
0}}{ } \underset{\infty}{f(x)} \cdot \underline{q(x)} \\
& \lim _{x \rightarrow c} f(x)^{q(x)} \\
& \text { Idea } \\
& 0^{\circ} \begin{array}{l}
\text { take } \\
\text { logarithon }
\end{array}
\end{aligned}
$$

Ex1 $\lim _{x \rightarrow 0^{+}}\left(e^{x}+7 x\right)^{1 / x}=L$

$$
\begin{aligned}
\ln L & =\lim _{x \rightarrow 0^{+}} \ln \left(e^{x}+7 x\right)^{1 / x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{1}{x} \ln \left(e^{x}+7 x\right) \\
& \left.=\lim _{x \rightarrow 0^{+}} \frac{\ln \left(e^{x}+7 x\right)}{\ln }\right) \\
& =\lim _{x \rightarrow 0^{+}} \frac{\left(\frac{e^{x}+7^{x}}{e^{x}+7 x}\right)}{1} \equiv \frac{8}{1} \\
\ln L=8 & =e^{\ln L}=e^{8} \approx 2980.95 \ldots
\end{aligned}
$$

\$9.6 Optimization;
(x) Which point ρ on cure $y=\sqrt{x}$ is closest to $(10,0)$?
How to Stank?
Draw picture:

to $(10,0)=$

$$
\begin{aligned}
& \sqrt{(x-10)^{2}+(\sqrt{x}-0)^{2}} \\
& =\sqrt{x^{2}-20 x+100+x} \\
& =\sqrt{x^{2}-19 x+100}:()^{1 / 2}
\end{aligned}
$$

Want to wala os small as possilter i ? fird minimum.

$$
\begin{aligned}
D^{\prime}=\frac{d D}{d x} & =\frac{1}{2} \frac{\left(x^{2}-19 x+100\right)^{-\frac{1}{2}}}{} \cdot(2 x-19) \\
& =\frac{2 x-19}{2 \sqrt{x^{2}-19 x+100}}=0 \Rightarrow
\end{aligned}
$$

Ext: Find the langer area of a rectangle R in prod I with 2 sides aton x / y arsis, end the upper right cosher on cave

$$
y=6-x^{2}-x
$$

A Fla of $R=$

$$
\begin{aligned}
A= & w-h \\
= & x \cdot\left(6-x^{2}-x\right) \\
& 0 \leq x \leq 2 \\
A= & 6 x-x^{3}-x^{2} x \text {-int }
\end{aligned}
$$

cost pts:

$$
d A / d x=6-3 x^{2}-2 x=0
$$

$$
\begin{aligned}
& 0=-3 x^{2}-2 x+6 \\
& \binom{0=3 x^{2}+2 x-6^{a x^{2} b x+c}}{x=\frac{-2 \pm \sqrt{4-4(3)(-6)}}{2(3)}} \\
& =\frac{-2 \pm \sqrt{26}}{6} \\
& \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \begin{array}{c}
-\frac{2-\sqrt{26}}{6} \\
x<0 \\
\operatorname{mar} / \text { min? } \\
\frac{-2+\sqrt{76}}{6} \\
\hline
\end{array}
\end{aligned}
$$

Easy: $d^{2} A / d x^{2}=-6 x-2<0$ conc town $=$ curt is
max

$$
\begin{gathered}
\text { so } x=\frac{-2+\sqrt{26}}{6} \cong 1.1196 \\
\left(\frac{-2+\sqrt{26}}{6}\right)\left(6-\left(\frac{-2+\sqrt{26}}{6}\right)^{2}-\left(-\frac{2+\sqrt{76}}{6}\right)\right) \\
112 \\
4.061
\end{gathered}
$$

Ex x^{3} Beth has 100 of fencing cud wants to enclose a garden next to her qeragei

Garden Y hae 3 sib plots: whet dimensions give the
| argest wrea for gardon??\}
$y=$ widm of gauden
$x=\operatorname{drptz}$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { Area }=A=x y \\
\text { Fence: } 100=y+4 x
\end{array}\right\} \Rightarrow \\
& A=x y=x(100-4 x) \\
& \text { (} 0 \leqslant x \leqslant 25 \text {) } \\
& A=100 x-4 x^{2} \\
& \frac{d A}{d x}=100-8 x=0 \\
& x=\frac{100}{8}=12.5
\end{aligned}
$$

$$
\begin{aligned}
d^{2} A / d x^{2} & =-8<0 \\
x & =12,5 \text { (rel max })
\end{aligned}
$$

$\frac{\text { Dimensions gater } \underbrace{y=100-r_{y}}}{12.5 \mathrm{ft} \times 50 \mathrm{ft}}$
Exy Find dimensions of a box wis a square bate and to top and volume is $500 \mathrm{in}^{3}$ and smallest surface area.

$s=$ side of sque hase
$h=$ heoght

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
S A=A=s^{2}+4 s h \\
V=s^{2} h=500
\end{array}\right. \\
& h=\frac{500}{s^{2}} \\
& A=s^{2}+4 s\left(\frac{500}{s^{2}}\right) \\
& \frac{d A}{d s}=s^{2}+\frac{2000}{s} \\
& \frac{d A}{d s}=2 s-\frac{2000}{s^{2}}=0 \\
& 2 s=\frac{2000}{s^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& s^{3}=1000 \quad s=10 \mathrm{in} \\
& d^{2} A / d s^{2}=2+\frac{4000}{s^{3}}>0 \\
& W \leftarrow \sim \ln \\
& s=\log
\end{aligned}
$$

diuensing: $10 \times 10 \times 5$

