Homework 5

Algebraic Topology

D. Projection: \(P(x, y, z) = (x, y) \) and \(P^{-1}(x, y) = (x, y, \sqrt{1 - x^2 - y^2}) \).

Affine: \(A(x, y) = R(x - 1/2, y - 1/2) \) and \(A^{-1}(x, y) = (x/R + 1/2, y/R + 1/2) \) for \(R \gg 0 \). If \(r = f(\theta) \) describes the boundary in polar coordinates, scale by \(S(r, \theta) = (r/f(\theta), \theta) \) with continuous inverse \(S^{-1}(r, \theta) = (rf(\theta), \theta) \).

§55 1. Let \(r : B^2 \to A \) be a retract of \(B^2 \) onto \(A \) and \(f : A \to A \) continuous. If \(j : A \hookrightarrow B^2 \) is the inclusion, then the composition \(j \circ f \circ r : B^2 \to B^2 \) is continuous and has a fixed point \(x \), so that \(j(f(r(x))) = x \). Letting \(a = f(r(x)) \in A \) we have \(x = j(a) = a \in A \) and so \(a = f(r(a)) = f(a) \).

2. Since \(h : S^1 \to S^1 \) is nulhomotopic, it extends to a map \(\tilde{h} : B^2 \to S^1 \subset B^2 \) by Lemma 55.3. Compose with inclusion \(j : S^1 \hookrightarrow B^2 \) to get \(j \circ \tilde{h} : B^2 \to B^2 \), hence \(j(\tilde{h}(b)) = b \) for some \(b \in B^2 \) by Brouwer’s theorem. Set \(s = \tilde{h}(b) \in S^1 \), so \(s = b \) and so \(h(s) = s \) since \(\tilde{h} \) extends \(h \).

Let \(\alpha(t) = e^{2\pi it} \) be the generator for \(\pi^1(S^1, 1) \) and \(\beta = h \circ \alpha \in \pi_1(S_1, b_0) \), where \(b_0 = h(\alpha(0)) \). Let \(p : \mathbb{R} \to S^1 \) be the covering \(p(x) = e^{2\pi ix} \) and choose \(e_0 \in \mathbb{R} \) with \(p(e_0) = b_0 \). Since \(p^{-1}(-1) = 1/2 + \mathbb{Z} \subset \mathbb{R} \), there exists \(n \in \mathbb{Z} \) with \(n - 1/2 < e_0 < n + 1/2 \). \(\beta : I \to \mathbb{R} \) be the unique lift of the path \(\beta \) starting at \(e_0 \). Since \(h \) is nulhomotopic, \(\beta(1) = e_0 \). On the other hand, the unique lift \(\tilde{\gamma} \) of \(\gamma = -\alpha(t) \) starting at \(n - 1/2 \) is given by \(\tilde{\gamma}(t) = n - 1/2 + t \), so that \(\tilde{\gamma}(0) = n - 1/2 \) and \(\tilde{\gamma}(1) = n + 1/2 \). Since \(\tilde{\gamma}(t) - \tilde{\beta}(t) \) changes sign, there is \(0 < T < 1 \) with \(\tilde{\gamma}(T) = \tilde{\beta}(T) \). Composing with \(p \) gives \(-\alpha(T) = \gamma(T) = \beta(T) = h(\alpha(T)) \) so that \(h(x) = -x \) for \(x = \alpha(T)^1 \).

3. Let \(T(x) = A(x)/\|A(x)\| \) for \(x \) in the first octant satisfying \(\|x\| = 1 \). Since \(A \) is nonsingular, \(A(x) \neq 0 \) so that \(T : B \to B \) is well-defined and continuous, where \(B \) is the intersection of the unit sphere and the first octant. Since \(B \) is homeomorphic to \(B^2 \) by Problem D above, \(T \) has a fixed point \(v \), i.e. \(A(v) = v/\|A(v)\| \) so that \(\|A(v)\| \) is a positive eigenvalue.

§58 1. Let \(H : X \times I \to X \) and \(G : A \times I \to A \) be the deformation retracts from \(X \) onto \(A \) and from \(A \) onto \(B \). Take \(F : X \times I \to X \) by \(F(x, t) = H(x, 2t) \) for \(0 \leq t \leq 1/2 \) and \(F(x, t) = G(H(x, 1), 2t - 1) \) for \(1/2 \leq t \leq 1 \). Then (a) \(F(x, 0) = x \) for \(x \in X \), (b) \(F \) retracts \(X \) onto \(B \) and \(F(x, 1) = G(H(x, 1), 1) = x \) for \(x \in B \) and (c) \(H(x, 1) = G(H(x, 1), 0) \) when \(t = 1/2 \), since \(H(x, 1) \in A \) and \(G(x, 1) = x \) for \(x \in A \), so \(F \) is continuous.

\(^1\)There is probably a better way to see that \(h(x) = -x \) for some \(x \) using vector fields (see proof of theorems 55.5 and 55.6 in book for example).
2. (a) \(\mathbb{Z} \) (b) \(\infty^2 \) (c) \(\mathbb{Z} \) (d) 0 (e) \(\infty \) (f) 0 (g) 0 (h) 0 (i) \(\mathbb{Z} \) (j) \(\mathbb{Z} \) (k) \(\infty \) (l) 0.

4. Two pictures, I’ll show these in class.

7. Since \(j \circ f \simeq \operatorname{Id}_X \), \(j_* \circ f_* \) is surjective by Corollary 58.5, hence so is \(j_* \).

Thus the issue is whether \(j_* \) is injective or not. (a) If \(f \) is a retract so that \(f(a) = a \) for \(a \in A \), then \(f \circ j : A \to A \) is the identity, hence so is \(f_* \circ j_* \) and \(j_* \) is injective. (b) If \(H(A \times I) \subset A \), then \(H(a, 1) = a \) for \(a \in A \) because \(H(x, 1) = \operatorname{Id}_X \) and \(H(a, 0) = j(f(a)) = f(a) = f(j(a)) \) for \(a \in A \), hence \(H \) gives a homotopy \(f \circ j \simeq \operatorname{Id}_A \). This implies \(f_* \circ j_* \) 1-1 and \(j_* \) also. (c) Take \(A = S^1 \subset B^2 = X \) and \(f : X \to A \) with \(f(x) = a \in A \) for some constant \(a \in A \). Then \(j \circ f \) is homotopic to the identity because \(X \) is contractible.

\(^2\)The figure eight