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Abstract. Noether-Lefschetz theory surrounds the question of determining when the
restriction map from the Picard group of a variety to the Picard group of a general mem-
ber of a linear system is an isomorphism, its origins dating back to Lefschetz’ proof from
1921 of a claim made my Noether in 1882. After discussing the Grothendieck-Lefschetz
theorems in higher dimensions, we focus on modern results in the three-dimensional
case, finishing with a new proof of Moishezon’s theorem. Then we will discuss problems
in local commutative algebra posed by Srinivas [38] and recent results obtained from
Noether-Lefschetz theory.

1. Noether-Lefschetz theory

Modern Noether-Lefschetz theory surrounds the following problem:

Problem 1.1. For which complex varieties X and line bundles L ∈ PicX is the restriction
map rY : PicX → PicY an isomorphism for general Y in the linear system |L| = PH0(L)?

For pairs (X,L) as bove, the following question has also received plenty of attention:

Problem 1.2. Describe the irreducible families V ⊂ |L| of surfaces for which the restric-
tion map rY fails to be an isomorphism: these are the Noether-Lefschetz components.

I will discuss results over C, but in their study of monodromy groups in characteristic
p > 0 [11, 19], Grothendieck, Deligne and Katz extended Lefschetz pencils, vanishing
cycles and the Picard-Lefschetz formula to obtain results on Problem 1.1 meaningful in
finite characteristic.

1.1. The Noether-Lefschetz theorem. The statement is as follows:

Theorem 1.3. For d > 3, the restriction map PicP3 → PicY is an isomorphism for very
general Y ∈ |H0(OP3(d))|.

1.1.1. Noether’s idea. Count dimensions.

Example 1.4. Let V ⊂ |O(d)| be the family of surfaces Y containing a line L. Let

I = {(L, S) : L ⊂ S} ⊂ G(1, 3)× V
be the incidence variety of lines on surfaces along with projections π2 : I → V and
π1 : I → G(1, 3), where G(1, 3) is the Grassmann variety of lines. The exact sequence

0→ H0(IL(d))→ H0(OP3(d))→ H0(OL(d))→ 0
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shows that dimπ−11 (L) = dim |O(d)| − d − 1, hence dim I ≤ dim |O(d)| − d + 3 since
dimG(1, 3) = 4. Therefore dimV ≤ dim |O(d)| − d + 3 so that V ⊂ |O(d)| is a proper
subvariety for d > 3.

Apparently Noether did many such calculations, leading to his conclusion.

Exercise 1.5. Carry out Noether’s dimension count for surfaces containing conics.

1.1.2. Lefschetz’ proof. Lefschetz easily proved an analogous statement in higher dimen-
sions. The exponential sequence 0→ Z→ OY → O∗Y → 0 yields

(1)
H1(Pn,OPn) → H1(Pn,O∗Pn) → H2(Pn,Z) → H2(Pn,OPn)

↓ ↓ α ↓ β ↓
H1(Y,OY ) → H1(Y,O∗Y ) → H2(Y,Z) → H2(Y,OY ).

For n > 3 the cohomology groups in the four corners are zero and α is identified with the
restriction map PicPn → PicY . The Lefschetz hyperplane theorem says that the maps
Hk(Pn,Z)→ Hk(Y,Z) are isomorphisms for k < n− 1 and injective for k = n− 1. Thus
β is an isomorphism for n > 3 and therefore α as well:

Theorem 1.6. If Y ⊂ Pn is a smooth hypersurface and n > 3, then the restriction map
PicPn → PicY is an isomorphism.

When n = 3 the result no longer follows from Diagram (1) because there is no zero in the
lower right and the Lefschetz hyperplane theorem no longer applies to β. The statement
fails for d = 2 and d = 3 and for d > 3 there are infinitely many Noether-Lefschetz
components V ⊂ |OP3(d)|, so the restriction map is not an isomorphism for Zariski general
Y ∈ |OP3(d)|. Lefschetz used a monodromy argument, showing that a typical deformation
(along a Lefschetz pencil) takes a Hodge class γ ∈ H1,1(Y,C) ∩ H2(Y,Z) representing
a non-complete intersection curve into H0,2(Y,C) and therefore becomes non-algebraic.
Voisin gives a clear exposition in her books on Hodge theory [41, 42].

Remark 1.7. Mumford’s challenge from the 1960s to find an explicit equation of a smooth
quartic S ⊂ P3 with PicS = 〈OS(1)〉 was finally answered by van Luijk in 2007. One
such equation [40, Remark 3.7] is

w(x3 + y3 + x2z + xw2) = 3x2y2 − 4x2yz + x2z2 + xy2z + xyz2 − y2z2.
Note that this surface contains the line w = z = 0 in characteristic p = 3, so this surface
specializes to a member of the Noether-Lefschetz locus in finite characteristic.

1.2. Higher dimension: Grothendieck-Lefschetz theorems. When dimX > 3, the
results are excellent.

Theorem 1.8. Let X be a smooth projective variety of dimension n ≥ 4. Then for any
effective ample divisor Y ⊂ X, the restriction map PicX → PicY is an isomorphism.

For example, every closed subscheme Y ⊂ P4 defined by a homogeneous polynomial
has Picard group PicY generated by OY (1). Hartshorne [21, IV, Corollary 3.3] simplified
Grothendieck’s original proof [18] by assuming X and Y nonsingular, but Lazarsfeld
observes that the smoothness of Y was unncessary [25, Remark 3.1.26]. Grothendieck’s
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original idea [18, Exposé X] is to consider an open neighborhood U of Y in the formal

completion X̂ of X along Y and show that the sequence of induced maps

PicX → PicU → Pic X̂ → PicY

are all isomorphisms. The most difficult part is the isomorphism Pic X̂ ∼= PicU , for which
Grothendieck defines effective Lefschetz conditions Leff(X, Y ) that are satisfied by the pair
(X, Y ). The last isomorphism is obtained by considering the infinitesimal neighborhoods
Yn ⊂ X defined by ideals InY . Kodaira vanishing implies that H i(Y, InY /In+1

Y ) = 0 for
i = 1, 2 and therefore the exact sequences 0 → InY /In+1

Y → O∗Yn
→ O∗Yn+1

→ 0 give

isomorphisms PicYn ∼= PicYn+1 for n > 0 and hence Pic X̂ ∼= lim
←−

PicYn ∼= PicY .

1.2.1. Normal varieties and class groups. For X normal, one can consider the strict trans-
form Ỹ ⊂ X̃ for a desingularization X̃ → X. If E ⊂ X̃ is the exceptional divisor, the for
general member Y ⊂ X of a base point free linear system we have the homomorphism
ClX ∼= Pic(X −E)→ Pic(Y −E) ∼= ClY . Ravindra and Srinivas [34] prove an “almost”
Lefschetz condition ALeff(X̃, Ỹ ) which leads to the following analog for class groups.

Theorem 1.9. Let X be a normal variety of dimension n ≥ 4. Assume L ∈ PicX is
ample and V ⊂ H0(X,L) is a base point free linear system. Then the general member
Y ∈ |V | is normal and the restriction map r : ClX → ClY is an isomorphism.

1.2.2. Linear systems with base locus. We used Theorem 1.9 in our result for linear sys-
tems with base locus [4].

Theorem 1.10. Let X ⊂ PN
C be a normal variety of dimension n ≥ 4 and let Z ⊂ X

be a closed subscheme of codimension ≥ 2 with codimension 2 irreducible components
Z1, Z2, . . . , Zs. Assume

(1) IZ(d− 1) is generated by global sections.
(2) Zi is not contained in the singular locus of X.
(3) Zi has generic embedding dimension at most dimX − 1.

Then the general member Y ∈ |H0(X, IZ(d))| is normal and the map α : ClX⊕Zs → ClY
given by (L, a1, . . . , as) 7→ L|Y +

∑
ai SuppYi is an isomorphism.

1.3. Dimension three: modern results. Problem 1.1 is harder when dimX = 3. One
must take Y ∈ |L| to be very general, avoiding a countable union of Noether-Lefschetz
components, which are dense in the Euclidean topology [7, 9]; moreover, the conclusion
fails without additional positivity assumptions on L. We briefly survey the work done
since 1980; see our survey [2] for more details.

1.3.1. Carlson, Green, Griffiths and Harris, 1983: Infinitesimal variant for sufficiently
ample L on smooth n-fold X using infinitesimal variations of Hodge structures [8]. They
prove that in the family of smooth Y ∈ |L|, the infinitesimally fixed part of the middle
cohomology groups Hp,q(Y ) is precisely the fixed cohomology coming from the ambient
space X.
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1.3.2. Green, 1984: used Koszul cohomology [14, 15] to show that Noether-Lefschetz com-
ponents satisfy d−3 ≤ codim(V, |OP3(d)|) ≤ pg(d) =

(
d−1
3

)
[13]. In particular, all Noether-

Lefschetz components for quartics have codimension one. His original argument used a
spectral sequence to deduce a vanishing of a Koszul cohomology group, but in 1988 he
gave a slicker proof using a filtration [16].

1.3.3. Griffiths and Harris, 1985: proved Theorem 1.3 by degenerating a general degree
d surface to a union of a plane union a smooth surface of degree d− 1 and computing the
Picard group of the central fiber of a desingularization of the total family [17].

1.3.4. Ein, 1985: extended Noether’s theorem from line bundles to vector bundles of
higher rank [12]. If T ⊂ H0(E) is a t-dimensional subspace and E is a rank r bundle,
one obtains a map T ⊗OX → E and dependency loci Dk where the rank of this map is
at most k. If 2(r + 3 − t) > n, then Dt−2 is empty and Y = Dt−1 is smooth: assuming
sufficient ampleness, Ein computed PicY in terms of PicX.

1.3.5. Lopez, 1989: For very general surfaces S ⊂ P3 containing a smooth curve C, PicS
is freely generated by C and OS(1) [27].

1.3.6. Ciliberto, Harris, Miranda and Green, 1988: showed that the Noether-Lefschetz
components are dense in the Euclidean topology [9].

1.3.7. Ciliberto and Lopez, 1991: constructed components of varying codimensions [10].

1.3.8. Joshi, 1995: used ideas in unpublished notes of Mohan Kumar and Srinivas to
prove a new infinitesimal variant for smooth threefolds, obtaining a result for general
singular surfaces [24].

1.3.9. Ravindra and Srinivas, 2009: proved that for X normal, ClX → ClY is an iso-
morphism for very general Y if L ample and K(L) globally generated [35].

1.3.10. Brevik and Nollet, 2011: proved a version for class groups and base locus (similar
to Theorem 1.10) for X = P3 [1].

1.4. Moishezon’s theorem. The best result for smooth complex threefolds was obtained
by Moishezon in his general study of algebraic homology classes [28]. He adapted the
argument of Lefschetz to prove the following remarkable theorem:

Theorem 1.11. Let X ⊂ PN
C be a smooth threefold and let Y ⊂ X be a very general

hyperplane section. Then the restriction PicX → PicY is an isomorphism if and only if

(a) b2(Y ) = b2(X) or
(b) h2,0(X) < h2,0(Y ).

When X = P3, condition (a) (equivalently H2(X,C) ∼= H2(Y,C)), picks up the “miss-
ing” case L = O(1) and Y ⊂ P3 is a plane. Since (a) fails for sufficiently positive
L, the most important case is (b). The Hodge condition h2,0(X) < h2,0(Y ) means
h2(OY ) > h2(OX) or the Serre dual h0(KY ) > h1(KX), but in view of the exact sequence

0→ H0(KX)→ H0(KX ⊗ L)→ H0(KY )→ H1(KX)→ 0
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arising from adjunction and Kodaira vanishing, this is equivalent to h0(KX) < h0(KX⊗L).
Since L is very ample and dimX > 0, this is equivalent toH0(KX⊗L) 6= 0 by the following
result for varieties X of positive dimension:

Fact 1.12. If A,L ∈ PicX, L very ample, then H0(L⊗ A) 6= 0⇒ h0(A) < h0(L⊗ A).

The hypothesis H0(KX ⊗ L) 6= 0 is notably weaker than those of several theorems in
the previous section. It is also essentially the hypothesis for the variant in Voisin’s book
on Hodge theory [41, 42]. Adapting the argument of Griffiths and Harris [17], we give a
new proof of Theorem 1.11 (b) when L = O(1) is a product of very ample line bundles:

Theorem 1.13. 1 Let X be a smooth complex threefold. If A,B ∈ PicX are very ample
and H0(KX ⊗ A⊗B) 6= 0, then r : PicX

∼−→ PicY for very general Y ∈ |A⊗B|.

Proof. Similar to the proof of Griffiths and Harris for X = P3, we focus on a general linear
pencil P1 ⊂ |A⊗B| containing a smooth surface S and a reducible surface T ∪P at t = 0
with D = T ∩ P a smooth curve. Our situation is more difficult because PicX → PicP
need not be an isomorphism and Pic0X need not be zero. The total family M ⊂ X×P1 is
singular over the central degenerate fiber 0 = t ∈ P1 at the points of intersection S∩P ∩T ,
but the corresponding total family of strict transforms M̃ ⊂ X̃ × P1 where X̃ → X is
the blow-up at S ∩ T is nonsingular near t = 0. The central fiber becomes T ∪ P̃ , where
P̃ → P is the blowup along P ∩ T ∩ S.

Claim 1: Pic M̃0
∼= PicX ⊕ ZOM̃(P̃ )|M̃0

.

Combining the hypothesis H0(KX ⊗ L) 6= 0 and Fact 1.12 with the exact sequence

0→ H0(KX ⊗B)→ H0(KX ⊗B ⊗ A)→ H0(KP ⊗B)→ 0

yields H0(KP ⊗B) 6= 0. Combining this with Fact 1.12 and the exact sequence

0→ H0(KP )→ H0(KP ⊗B)→ H0(KD)→ H1(KP )→ 0

yields H1(OD) = H0(KD) > H1(KP ) = H1(OP ). Since H1(OV ) is naturally the tangent
space to the Picard variety Pic0 V at the origin, the inclusion leads us to a closed immersion
Pic0 P ↪→ Pic0D of Picard varieties. In particular the embedding of P by B is not the
Veronese surface embedded by quadrics nor is it a ruled surface, hence |B ⊗ OP | has a
pencil consisting of irreducible curves [27, II.2.4], from which it follows that if L ∈ PicP
and LD

∼= OD for general D in such a pencil, then L ∼= OP is trivial [27, II.2.3]. Looking
at the countably many representatives L ∈ PicP/Pic0 P −{0} in the Néron-Severi group,
it follows that LD 6∼= D for a proper algebraic subset of D ∈ |B| and hence PicP → PicD
is injective for very general D ∈ |B ⊗ OP |. Reversing the roles of P and T we also
obtain injective PicT → PicD for very general D ∈ |A ⊗ OT | and for very general
(P, T ) ∈ |A| × |B| we obtain a commutative diagram

(2) PicX

��

// PicP

��
PicT // PicD

in which all restriction maps are injective (the maps from PicX are injective by [34]).
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We show Diagram (2) is Cartesian. For this we fix P and L ∈ PicP/Pic0 P and show
that if L|D ∈ PicT for general T ∈ |B|, then L ∈ PicX. The idea of the proof here is
that the set of T with L|D ∈ PicT is closed and if is all of |B|, then by unicity we can
find a continuous family of lines bundles Lt ∈ PicTt. Restricting to a pencil P1 ⊂ |B|,
representability of the relative Picard scheme gives a line bundle on the total family over
the pencil, but if the pencil has base locus C = T0∩T1, then the total family is isomorphic
to X̃ → X, the blow up along C. This gives a line bundle A on X modulo the exceptional
divisor of the blow up, and with minor modification we show that A|P = L. Working
over the countable representatives for PicP/Pic0 P we find that the diagram is Cartesian
for very general T and hence PicP ×PicD PicT ∼= PicX, which computes PicM0. With
similar arguments we show for very general S that Pic M̃0

∼= PicX ⊕OM̃(P̃ )⊗OM̃0
.

With Claim 1 in hand, the rest of the proof flows along the lines of Griffiths and Harris’
proof [17]. Each Noether-Lefschetz component V ⊂ |A ⊗ B| is the image of a relative
Hilbert scheme component W ⊂ Hilb of curves whose divisor classes are not in the image
of PicX and we need to show that the map π : W → |A ⊗ B| is not dominant. If it
were dominant, then there is a pencil P1 ⊂ |A ⊗ B| as constructed in Step 1 for which
π−1P1 → P1 is dominant. We can then find an integral curve E0 ⊂ W dominating P1 and
after normalizing a smooth curve E → P1. Pulling back the family M̃ → P1 back to a
new family Z → E, we use Claim 1 to deduce that image is proper. �

2. Questions of Srinivas

The local ring A = OX,x of a point x on a complex algebraic variety X is a geometric

local domain. If A is normal, then so is the completion R = Â and the natural map
A→ R is flat, hence the Mori map [39]

(3) ι : ClA ↪→ ClR

given by p 7→
∑

P∩A=p e(P, p)P is a well-defined injective homomorphism where e(P, p)

is the ramification index of the field extension K(A/p) ⊂ K(B/P ). It is essentially the
pull-back map along SpecR → SpecA after removing singularities. Srinivas [38] asks
about the images of Inclusion (3) for fixed R as A varies over geometric normal local

domains satisfying R ∼= Â:

Question 2.1. Let R be the completion of a normal geometric local ring. Which sub-

groups of ClR arise as images ClA ↪→ ClR where R ∼= Â?

The following example of Srinivas [38] shows that Question 2.1 is interesting.

Example 2.2. The complete local ring R = C[[x, y, z]]/(x2 + y3 + z7) has class group

ClR ∼= C [39], but for every geometric local ring A with Â ∼= R, the image ClA ↪→ ClR
is necessarily finitely generated [38, Example 3.9]. Srinivas reasons that if A = OX,x for a
surface X and Y → X is a resolution of singularities, then the induced map PicY → ClA
is surjective. Since Pic0 Y is projective, it has trivial image in the affine group Ga = C,
therefore ClA→ C factors through the finitely generated Neron-Severi group.

After asking Question 2.1, Srinivas backs off somewhat, instead asking about the min-
imal possible images of the Mori map.
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Question 2.3. Let R be the completion of a normal geometric local ring.

(a) If R is Gorenstein, is R the completion of a geometric UFD?

(b) Does there exist geometric ring A with R ∼= Â and ClA = 〈ωA〉?

Remark 2.4. These questions are only interesting for singularities. If A is a regular local
ring, then so is R = Â so that ClR = 0 and consequently any ring A with Â ∼= R satisfies
ClA = 0, hence is a UFD.

Remark 2.5. If A is the codimension r quotient of a regular local ring B, then the
dualizing module ωA = ExtrA(B,A) ∈ ClR is independent of B and the image in ClR
is independent of A. Thus Question 2.1 (b) asks about the minimal image. Moreover
ωA ∈ ClR is zero if and only if R is Gorenstein [30], so (a) is a special case of (b).

2.1. Minimal images. We note some progress made on Question 2.3.

2.1.1. Grothendieck, 1968: solved Samuel’s conjecture, proving that a local complete in-
tersection ring that is factorial in codimension ≤ 3 is a UFD [18, XI, Cor. 3.14].

2.1.2. Hartshorne and Ogus, 1973: if R has an isolated singularity, depthR ≥ 3 and
embedding dimension at most 2 dimR− 3, then R is a UFD [22].

2.1.3. Heitmann, 1993: characterized completions of UFDs [23], but his constructions
rarely produce geometric rings.

2.1.4. Srinivas, 1987: Part (a): Yes for rational double points [37].

2.1.5. Parameswaran and van Straten, 1993: Part (b): Yes if dimR = 2 [33].

2.1.6. Parameswaran and Srinivas, 1994: Part (a): Yes for local complete intersections
of dimensions two and three with isolated singularity [32].

2.1.7. Brevik and Nollet, 2016: Part (a): Yes for hypersurface singularities of dimension
≥ 2 [3] and local complete intersection singularities of dimension ≥ 3 [4].

2.2. Proof for hypersurfaces. We illustrate our method for hypersurface singularities.
Let f ∈ C[x1, x2, . . . xn] be the equation of a hypersurface V which normal at the origin p,
corresponding to the maximal ideal m = (x1, . . . , xn), and let R = C[[x1, x2, . . . xn]]/(f)
be the completion of A = OV,p. The singular locus D of V is given by the ideal (f) + Jf ,
where Jf = (fx1 , . . . , fxn). Primary decomposition in C[x1, . . . , xn] gives

Jf =
⋂
pi⊂m

qi ∩
⋂
pi 6⊂m

qi

where qi is pi-primary and we have sorted into components that meet the origin and those
that do not. Denote by K the intersection on the left and J the intersection on the right;
localizing at m we find that (Jf )m = Km because Jm = (1).

Now if K = (k1, . . . , kr) ⊂ C[x1, . . . , xn], then the closed subscheme Z defined by the
ideal IY = (f, k31, . . . k

3
r) is supported on the components of the singular locus of V that

contain the origin, hence codim(Z,Pn) ≥ 3 by normality of V at the origin. The very
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general hypersurface Y containing Z satisfies ClY = 0 by Theorem 1.10 or 1.3.10 above,
so ClOY,p = 0 as well and OY,p is a UFD [20, Prop. 6.2]. Moreover, Y has local equation

g = f + a1k
3
1 + · · ·+ ark

3
r

for units ai, and hence f − g ∈ K3. Since Km = (Jf )m, their completions are equal in
C[[x1, . . . , xn]]. Therefore f − g ∈ J3

f ⊂ mJ2
f and a result of Ruiz [36, V, Lemma 2.2] tells

us that ÔY,p = C[[x1, . . . , xn]]/(g) ∼= C[[x1, . . . , xn]]/(f) = R.

2.3. General images. While Question 2.3 has received much attention, Question 2.1
remains wide open. To understand it better, we call an element α ∈ ClR a geometric

divisor if it is in the image of the inclusion (3) for some geometric local ring A with R = Â.
In view of Example 2.2, we pose the following:

Question 2.6. Which statements hold for the completion R of a normal geometric ring?

(a) Given any finitely generated group G ⊂ ClR, there a geometric local ring B with

B̂ = R and G = ClB.
(b) Given α1, . . . , αr ∈ ClR, there is a geometric local ring B with B̂ = R and

αi ∈ ClB for 1 ≤ i ≤ r.
(c) Every α ∈ ClR a geometric divisor.
(d) The geometric divisors form a subgroup of ClR.

Note the easy implications (a) ⇒ (b) ⇒ (c) ⇒ (d). Our ignorance about the nature
of geometric divisors is revealed in part (c): could there be transcendental divisors that
cannot be accessed geometrically? The methods of [3, 4] suggest the following possibility:

Conjecture 2.7. Statement 2.6 (a) holds for local complete intersection singularities.

For local complete intersection singularities we recently [6] proved the reverse implica-
tion (b)⇒ (a):

Theorem 2.8. If x ∈ X ⊂ Pn is a normal complete intersection point and G ⊂ ClOX,x

is finitely generated, then there exists a complete intersection W ⊂ Pn and w ∈ W with
ÔW,w

∼= ÔX,x and ClOW,w ⊂ ClOW,w identified with G ⊂ Cl ÔX,x.

With current Noether-Lefschetz theorems [1, 4] we must take n = 3 when dimX = 2
in the theorem statement, but we expect the statement holds in general.

Corollary 2.9. Statement 2.6 (a) holds for rational double point singularities.

We proved this result first using explicit non-reduced curves as base loci in our Noether-
Lefschetz theorem with base locus [3], but it follows more easily from Theorem 2.8.

Remark 2.10. Corollary 2.9 contrasts with the case in which the function field is rational,
where Mohan Kumar [29] shows that for most An and En singularities there is only one
isomorphism class for the local ring (and thus the class group). The three exceptions,
with two possibilities each, are the E8, A7, and A8; for all other En and An singularities,
the Mori map is an isomorphism. Since an E8 is a UFD under completion, any E8 is a
UFD. By following Mohan Kumar’s constructions of the A7 and A8 carefully, one sees
that the image of the Mori map for the A7 is either the full completed class group Z/8Z
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or the subgroup of order 4, while in the A8 case the Mori map is either surjective onto
Z/9Z or its image is of order 3.

We deduce the following for vertex singularities on cones over smooth varieties.

Corollary 2.11. Statement 2.6 (a) holds for the completed local ring at the vertex p of the
cone V over smooth complete intersection varieties X ⊂ Pn of dimension at least three.

Finally we show that every finitely generated abelian group arises as a local class group
of a singularity of a surface in P3.

Corollary 2.12. Let G be any finitely generated abelian group. Then there is a point p

on a normal surface S ⊂ P3 for which G ∼= ClOS,p ⊂ Cl ÔS,p.

We construct S with an isolated singularity p that is analytically isomorphic to a vertex
singularity of a cone over a plane curve of high degree. Write G ∼= Zr ⊕

⊕s
i=1 Z/niZ for

suitable r, s, ni. Choose a smooth plane curve C of high degree with genus satisfying
g ≥ 1

2
(r+ s). The vertex p of the cone S over C has class group ClOS,p

∼= PicC/〈OC(1)〉.
Since the only degree-0 class in 〈OC(1)〉 is 0, the composite map

Pic0(C)→ PicC → PicC/〈OC(1)〉
is injective, where Pic0(C) is the subgroup of PicC consisting of the degree-0 classes.
Since Pic0(C) is isomorphic to the Jacobian variety J(C), which for the complex curve C
is isomorphic to Cg/Λ with Λ a rank-(2g) lattice in Cg, we see that

Pic0(C) ∼= R2g/Z2g ∼= (R/Z)2g

as an additive group. Since R/Z has elements of all orders (including∞), we can choose r
elements of summands having order∞ and s elements having respective orders ni, which
generate a subgroup of R2g/Z2g isomorphic to G. Apply Theorem 2.8 to these elements.
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