Lie Groups

Example The orthogonal group $O(2)$ is the set of 2×2 matrices A such that $A^tA = I$. The special orthogonal group $SO(2)$ is the set of orthogonal matrices with determinant 1. Let’s examine this. First, let’s think of these matrices as a pair of column vectors. So if $A \in O(2)$, then

$$A = \begin{pmatrix} v_1 & w_1 \\ v_2 & w_2 \end{pmatrix}$$

with $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ and $w = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$ as the two column vectors. So the equation $A^tA = I$ is equivalent to

$$\begin{pmatrix} v_1 & v_2 \\ w_1 & w_2 \end{pmatrix} \begin{pmatrix} v_1 & w_1 \\ v_2 & w_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

or

$$\begin{pmatrix} v_1^2 + v_2^2 & v_1w_1 + v_2w_2 \\ v_1w_1 + v_2w_2 & w_1^2 + w_2^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

or

$$\begin{pmatrix} v \cdot v & v \cdot w \\ v \cdot w & w \cdot w \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Thus, $O(2)$ is the set of 2×2 matrices where the column vectors form an orthonormal frame, an orthonormal basis of \mathbb{R}^2. Note that $\begin{pmatrix} w_2 \\ -w_1 \end{pmatrix}$ is the result after rotating the vector $\begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$ clockwise 90 degrees, and the determinant of the matrix is

$$\det A = v_1w_2 - v_2w_1 = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \cdot \begin{pmatrix} w_2 \\ -w_1 \end{pmatrix},$$

which is 1 if (v, w) is an oriented frame (ie w is the result of a counterclockwise 90 degree rotation of v) and is -1 if (v, w) has the reverse orientation (ie w is the result of a clockwise 90 degree rotation of v). Thus $SO(2)$ corresponds to the set of oriented orthonormal frames.

Definition A Lie group G is a manifold and group for which the multiplication map $\mu : G \times G \to G$ is smooth.

Remark It follows that the inverse map $i : G \to G$ defined by $i(g) = g^{-1}$ is also smooth. Proof: implicit fcn theorem + diagram
\[\mu^{-1}(e) \subseteq G \times G \xrightarrow{\mu} G \]
\[\pi_1 \downarrow \]

\[G \]

Example (\(\mathbb{R}^n, + \))

Example \(S^1 \) or \(T^n = S^1 \times \ldots \times S^1 \)

Example \(Gl(n, F) \subseteq F^n \), where \(F = \mathbb{R} \) or \(\mathbb{C} \)

Example \(E_3 = \text{isometries of } \mathbb{R}^3 \) (2 connected components) Let the orthogonal group \(O_3 < E_3 \) be the subgroup that fixes the origin, and let the special orthogonal group \(SO(3) = SO_3 < O_3 \) be the orientation-preserving elements of \(O_3 \).

Visualizing \(SO(3) \): Let \(u \) be a vector of length \(l \) in \(\mathbb{R}^3 \), corresponding to a rotation of angle \(l \) around the axis \(u \). Redundancy: if \(l = |u| = \pi \), \(u \) gives the same rotation as \(-u \), so \(SO(3) \) is the ball of radius \(\pi \) with antipodal points identified = \(\mathbb{R}P^3 \).

Matrix groups

Theorem If \(G \) is a Lie group and \(H < G \), then \(H \) is a Lie subgroup with the subspace topology if and only if \(H \) is closed.

Example Embed \(\mathbb{R} \) as an irrational slope on \(\mathbb{R}^2 / \mathbb{Z}^2 = T^2 \); then this is a subgroup but is not a Lie subgroup.

Note that

\[E_3 \cong \left\{ \begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix} \subseteq Gl(4, \mathbb{R}) \right\} \text{ such that } A \in O_3 \]

\(b \) is the translation vector.

Classical Lie (sub)groups: \(Sl(n, F) \) (det=1), \(O(n) \) (\(gg^t = 1 \), orthogonal group), \(SO(n) \) (\(gg^t = 1 \), det=1, special orthogonal group), \(U(n) \) (\(gg^* = 1 \), unitary group), \(SU(n) \) (\(gg^* = 1 \), det=1, special unitary group), \(Sp(n) = \{ g \in Gl(n, \mathbb{H}) : gg^* = 1 \} \) (symplectic group).

Why study general Lie groups? Well, a standard group could be embedded in a funny way.

For example, \(\mathbb{R} \) can be embedded as \((e^t)\) as matrices, or as \(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \) or as

\[\begin{pmatrix} \cosh(x) & \sinh(x) \\ \sinh(x) & \cosh(x) \end{pmatrix} \]. Also, some examples are not matrix groups. For example, consider the following quotient of the Heisenberg group \(N \): Let
Let $G = N / Z$

These groups are important in quantum mechanics. Also, consider the following transformations of $L^2(\mathbb{R})$:

$$T_a(f)(x) = f(x - a)$$
$$M_b(f)(x) = e^{2\pi i b x} f(x)$$
$$U_c(f)(x) = e^{2\pi i c x} f(x)$$

The group of operators of the form $T_a M_b U_c$ corresponds exactly to

$$\begin{pmatrix} 1 & a & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

quantum mechanics, T_a corresponds to a unitary involution of momentum, and M is the momentum, U is phase.

Note that every Lie group is locally a matrix group.

Low dimensional, connected examples:

1. Dim 1: \mathbb{R}, S^1
2. Dim 2: only nonabelian example is the space of affine transformations $x \mapsto mx + b$ of \mathbb{R}.
3. Dim 3: SO_3, $SL_2(\mathbb{R})$, E_2, N (only new ones up to local isomorphism: G_1 and G_2 are locally isomorphic if there exist open neighborhoods around the identities that are homeomorphic through multiplication-preserving homeo).

Relationships between Lie groups

Observe that $U_2 = \{ g : gg^* = 1 \}$, $SU_2 = \{ g \in U_2 : \det g = 1 \}$.

For every $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SU_2$, then $g^* = g^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} \bar{a} & \bar{b} \\ \bar{c} & \bar{d} \end{pmatrix}$.

so
\[SU_2 = \{ g \in U_2 : \det g = 1 \} \]
\[= \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} : a, b \in \mathbb{C}, |a|^2 + |b|^2 = 1 \right\} = S^3 \]
\[= \left\{ \begin{pmatrix} t + ix & y + zi \\ -y + zi & t - ix \end{pmatrix} : (t, x, y, z) \in S^3 \right\} \]
\[= \left\{ q = \mathbf{1} + x\hat{i} + y\hat{j} + z\hat{k} \in H : (t, x, y, z) \in S^3 \right\} = Sp(1), \]

where

\[\hat{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \]
\[\hat{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \]
\[\hat{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}. \]

satisfy the relations

\[\hat{i}^2 = \hat{j}^2 = \hat{k}^2 = -\mathbf{1} \]
\[\hat{i}\hat{j} = -\hat{j}\hat{i} = \hat{k}; \quad \hat{j}\hat{k} = -\hat{k}\hat{j} = \hat{i}; \quad \hat{k}\hat{i} = -i\hat{k} = \hat{j}. \]