Energies of Graphs and Matrices
Duy Nguyen

Texas Christian University
Parabola Talk

October 6, 2010
Summary

1. Definitions
 - Energy of Graph

2. Laplacian Energy
 - Laplacian Matrices
 - Edge Deletion

3. Maximum energy

4. The Integral Formula
 - Integral Formula for Laplacian Energy
Adjacency Matrix

Let G be a finite, undirected, simple graph with n vertices and m edges. Define the Adjacency matrix of G, as follows:

$$A(G)_{i,j} = \begin{cases}
1 & \text{if } v_i \text{ and } v_j \text{ are adjacent} \\
0 & \text{if } v_i \text{ and } v_j \text{ are not adjacent}
\end{cases}$$

$A(G)$ is a symmetric matrix whose eigenvalues λ_i are real and $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.
Energy of a Graph

- 1978, I. Gutman defined the energy of a graph $E(G)$ to be the sum of the absolute values of the eigenvalues of its adjacency matrix.

- Concept originated in Chemistry

- Hückel molecular orbital method uses π-electron energy to compute heat of combustion for hydrocarbons.
Generalizations of Graph Energy

Two generalizations of the concept:

- Nikiforov (2007): The energy of a matrix A is the sum of its singular values (singular values = square roots of the eigenvalues of AA^*.) For any $A \in \mathcal{M}_{m,n}$ define the energy of A, $\mathcal{E}(A)$,

$$\mathcal{E}(A) = \sum_{i=1}^{m} s_i(A).$$

From above, we note that the usual energy of a graph G, $E(G) = \mathcal{E}(A(G))$.

- Gutman and others: For a graph G on n vertices with associated matrix M, the energy of G is defined as:

$$E_M(G) = \sum_{i=1}^{n} |\mu_i - \bar{\mu}|$$

where μ_i's are the eigenvalues of M, and $\bar{\mu}$ is the average of those eigenvalues.
Definition of the Laplacian Matrix

- Let n be the number of vertices, and m number of edges.
- Laplacian matrix $L(G) = D(G) - A(G)$ where $D(G)$ is the diagonal matrix of G with $D(G)_{ii} = \text{degree of } v_i$, and $A(G)$ is the adjacency matrix.
- Laplacian matrix is *symmetric, positive semidefinite, singular*.
- Laplacian Energy $LE(G) = \sum_{i=1}^{n} |\lambda_i - \frac{2m}{n}|$ where λ_i are the eigenvalues of the Laplacian matrix.
Definition of Signless Laplacian Matrix

- Signless Laplacian matrix $L^+(G) = D(G) + A(G)$ where $D(G)$ is the degree matrix of G, and $A(G)$ is the adjacency matrix.
- Signless Laplacian Energy $LE^+(G) = \sum_{i=1}^{n} |\lambda_i - \frac{2m}{n}|$ where λ_i are the eigenvalues of the signless Laplacian matrix.
Definitions:

- Let \(A = [a_{ij}] \) be the \(n \)-by-\(n \) matrix with real entries.
- \(A \) is said to be *symmetric* if \(A = A^T \).
- Theorem: *Symmetric* matrices with real entries have real eigenvalues.
Preliminaries on Energy of Graphs:

- $\sqrt{2m + n(n - 1)|\text{det}A|^2/n} \leq E(G) \leq \sqrt{2mn}$ □
- Only edges: $2\sqrt{m} \leq E(G) \leq 2m$
- Only vertices: $2\sqrt{n - 1} \leq E(G) \leq \frac{n}{2}(1 + \sqrt{n})$
- Question: What is the maximal adjacency energy of graphs on n vertices and how to construct such graph? (Hard!)
Finding Energy for Specific Graphs:

Laplacian Energy for complete graph K_n

<table>
<thead>
<tr>
<th>Lemma 1</th>
<th>If $A_{n \times n}$ is nonsingular, and if c and d are $n \times 1$ columns, then $\det(A + cd^T) = \det(A)(1 + d^T A^{-1} c)$.</th>
</tr>
</thead>
</table>

| Theorem | Let L be the Laplacian matrix of the complete graph K_n, then

1. Characteristic polynomial of L is $\det(\lambda I - L) = \lambda(\lambda - n)^{n-1}$
2. Laplacian Energy of K_n is $LE(K_n) = 2(n - 1)$ |
H is an induced subgraph of G if the vertex set of H, $V(H)$, is a subset of $V(G)$ and the edge set of H, $E(H)$ contains all edges in G that connect two vertices in $V(H)$.

\tilde{H} is the union of H and all other vertices of G (as isolated vertices).
Ky Fan’s Inequality

\[\sum_{i=1}^{n} s_i(X) + \sum_{i=1}^{n} s_i(Y) \geq \sum_{i=1}^{n} s_i(X + Y), \]

where \(X, Y \) are \(n \times n \) matrices.

Theorem 1 [REU’09]

Let \(H \) be an induced subgraph of a simple graph \(G \). Suppose \(\tilde{H} \) denotes the union of \(H \) and vertices of \(G - H \) (as isolated vertices). Then

\[\text{LE}(G) - \text{LE}(\tilde{H}) \leq \text{LE}(G - \text{E}(H)) \leq \text{LE}(G) + \text{LE}(\tilde{H}). \]

Theorem 2 [REU’09]

the result in *Theorem 1* also occurs for Signless Laplacian energy,

\[\text{LE}^+(G) - \text{LE}^+(\tilde{H}) \leq \text{LE}^+(G - \text{E}(H)) \leq \text{LE}^+(G) + \text{LE}^+(\tilde{H}). \]
Proof of Theorem 1

Note that

\[D(G) = D(\tilde{H}) + D(G - E(H)). \]

Since

\[A(G) = \begin{bmatrix} A(H) & X^T \\ X & A(G - H) \end{bmatrix} \]

where \(X \) corresponds to the edges connecting \(H \) and \(G - H \), we have

\[A(G) = \begin{bmatrix} A(H) & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & X^T \\ X & A(G - H) \end{bmatrix} \]

\[= A(\tilde{H}) + A(G - E(H)). \]

Therefore,

\[L(G) = D(G) - A(G) = L(\tilde{H}) + L(G - E(H)). \]
Cont. Proof

Since $m = |E(\tilde{H})| + |E(G - E(H))|$, it results that

$$L(G) - \frac{2m}{n} I = \left(L(\tilde{H}) - \frac{2|E(\tilde{H})|}{n} I \right) + \left(L(G - E(H)) - \frac{2|E(G - E(H))|}{n} I \right).$$

Hence, by Ky Fan’s inequality, we have

$$LE(G) \leq LE(\tilde{H}) + LE(G - E(H)) \quad \Box$$
Lemma

Suppose \tilde{H} consists of K_2 and $n - 2$ isolated vertices. Then $LE(\tilde{H}) = \frac{4(n-1)}{n}$.

Corollary [REU'09]

$$LE(G) - \frac{4(n-1)}{n} \leq LE(G - \{e\}) \leq LE(G) + \frac{4(n-1)}{n}.$$

Proof.

Apply Theorem 1 with $H = K_2$ and \tilde{H} consists of K_2 and $(n - 2)$ isolated vertices.
We can do better!

Theorem 3

\[
LE(G) \leq LE(\tilde{H}) + LE(G - E(H)) \leq 4m\left(1 - \frac{1}{n}\right)
\]
Hyperenergetic graphs

- **Initial Conjecture** (1978): Among graph with \(n \) vertices, the complete graph \(K_n \) has the maximum adjacency energy (equal to \(2(n - 1) \)).
- Soon disproved by Chris Godsil.

Definition

A graph \(G \) having energy greater than the complete graph on the same number of vertices is called *hyperenergetic*.

- Gutman performed a useful experiment: Start with \(n \)-isolated vertices, add edges one-by-one uniformly at random, until end up with \(K_n \).
- Their main observation is: The expected energy of a random \((n, m)\)–graph first increases, attain a maximum at some \(m \), then decreases.
Fig. 1. The dependence of the average energy $<E>$ of graphs with $n = 30$ vertices on $m =$ number of edges; energies above the horizontal line correspond to hyperenergetic graphs.

Figure: average energy vs. edges on $n=30$
Maximum Laplacian Energy

A pineapple PA_{pq} is a graph obtained from the complete graph K_p by attaching q pendant vertices to the same vertex of K_p.

Conjecture

The maximum Laplacian energy among graphs on n vertices has a pineapple $PA_{\left\lceil \frac{2n+1}{3} \right\rceil, \left\lfloor \frac{n-1}{3} \right\rfloor}$.
The Coulson Integral (1940)

Coulson Theorem

If G is a graph on n vertices, then

$$E(G) = \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{+\infty} \left[n - \frac{ix\phi'(ix)}{\phi(ix)} \right] dx.$$

where ϕ is the characteristic polynomial of $A(G)$.

We have proved similar integral formulas for the Laplacian, Signless Laplacian, and Distance Energies.
Theorem 6[REU’09]

If G is a graph on \(n \) vertices and \(m \) edges, then

\[
\text{LE}(G) = \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{+\infty} \left[n - \frac{ix\phi'_{L}(ix)}{\phi_{L}(ix)} \right] dx.
\]

where \(\phi_{L} \) is the characteristic polynomial of \(L(G) - \frac{2m}{n} I \).
Conjecture

We can apply this integral formula for proving the following

\[\text{LE}(P_n) \leq \text{LE}(T_n) \leq \text{LE}(S_n) \]
Bibliography

Acknowledgements

- This research was supported by the NSF through the grant DMS 08-51321.
- Texas Christian University for support through TCU Undergraduate Summer Research Grant Program (USRGP).
- I thank Professor Sivaram Narayan and Central Michigan University. Especially, I thank Professor Gilbert and Professor Dou for writing me letters of recommendation. Furthermore, Professor Gilbert and Professor Prokhorenkov spent time correcting and helping my talk.
- The software *newgraph 1.1.3* was provided by Dragan Stevanovic.