2005 Calculus Bee

Winners:
1st place: Pathikrit Bhowmick
2nd Place: John Rhoads
3rd Place: Nathan Wenneker

1. Find \(\int (3x + 5)^{2005} \, dx \).
2. Find \(\frac{d}{d\theta} \left(\sin^{2005} (\theta^{2005}) \right) \).
3. Find \(\int_{0}^{2005} 2005^{2005} \, dx \).
4. The graph of \(y = g(x) \) is pictured below. Put the following four numbers in increasing order:
 2005, -2005, \(g(-2005) \), \(g'(2005) \)

5. Evaluate \(\int_{-2005}^{2005} \left(1 + xe^{x^4} \cos x \right) \, dx \).
6. Find the area between the curves \(y = x + 2 \) and \(y = x^2 \).
7. For which value of \(x \) is the quantity \(\frac{1}{\sqrt{x^2 + 2005x + 2005^{2005}}} \) the greatest?
8. Evaluate \(\lim_{x \to 0^+} \frac{9}{x^2} + \frac{7}{x} - \frac{3}{x} \).
9. Suppose that you are given the following information about a function \(g \):
 \[g(0) = 3; \quad g(1) = 5 \]
 \[g'(0) = 11; \quad g'(1) = 31 \]
 \[g''(0) = 23; \quad g''(1) = 19 \]
 \(g''(x) \) is continuous.

Find \(\int_{0}^{1} xg''(x) \, dx \).
10. For \(f(x) = 1 + 3x^2 + 9x^4 + 27x^6 + \ldots + 3^n x^{2n} + \ldots \), express \(f'(1/2) \) as a simplified fraction.