
Qiao Zhang’s Lectures: Intro to Zeta Functions and
L-functions

Almost everything in Number Theory can be interpreted in terms ofL-functions. This is a
very broad subject. We will have a very brief discussion here, including the most important
algebraic properties.

Construction, Properties, Examples
The Riemann Zeta Function is the father of allL-functions. The definition is
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for Res > 1.
Properties:

1. ζs has an analytic continuation toC with a simple pole ats = 1.
2. ζs satisfies a functional equation.
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The functional equation is

Λs = Λ1 − s.

The partπ−s/2Γ s
2

comes from the ordinary absolute value, and1 − 1
ps

−1
p-adic evaluation.

NoteΛ has poles only ats = 0, 1.
3. ζs has trivial zeros ats = −2,−4,−6, . . . , but there are also infinitely many nontrivial zeros in

the critical strip0 ≤ Res ≤ 1.
4. Riemann Hypothesis: all the nontrivial zeros are on the lineRes = 1

2
.

Langlands Program/Conjecture: everyL-function comes from an automorphic form.
Generalizations:
The Euler product
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is equivalent toZ is a UFD. To generalize, we need a UFD. The sum overn is a sum over
ideals. Also, the∏

p
is a product over prime ideals. EG - the algebraic number field case:

integral ideals vs. prime ideals. We must work with norms of ideals. Sometimes1 in the
numerator of the prime product is replaced by a general complex number that is connected to
the local properties of some object (and onp). Maybe there will be several factors for eachp.

In general, theL-function may look like

Ls,X = ∑
n=1

∞
λXn

ns = ∏
p

1 −
λX,1p

ps

−1

1 −
λX,2p

ps

−1

. . . 1 −
λX,rp

ps

−1

Additional desired properties:



1. analytic continuation (usually without poles)
2. Functional equation, eg

Λs, X = ∗Ls, X

Λs, X = Λ1 − s, X∗ 

3. Trivial zeros, Nontrivial zeros
4. GRH (Generalized Riemann Hypothesis)

In many cases, these properties are unsolved problems.
Usually,L-functions include global properties, also for the zeta functions, we might also

be interested in local properties (eg modp ).
Concrete Examples:

Example Dirichlet L-function: Given a characterχ : Z╱NZ× → C
×
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Example Elliptic Curves

Let E╱Q be an elliptic curve (genus 1). All such have a cubic equation:

y2 = 4x3 − g2x − g3

with g2, g3 ∈ Q. Question: Are there integer points on this curve? At eachp, let

ap = p − #x, y ∈ Fp
2 : y2 = 4x3 − g2x − g3modp
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whereαp + βp = ap, αpβp = p. This converges forRes > 3
2

. We would like to find an
analytic continuation (only proved by Wiles in 1993).

Example Modular L-function. Let f be a cusp form of weightk for SL2Z. This is a
holomorphic section of a line bundle of weightk overSL2Z╲h. In other words,

f az + b
cz + d

= cz + dkfz,

for a, b, c, d ∈ Z, ad − bc = 1. Note that the “forms” of type “fzdzk/2” that are
invariant have thesefz’s above. Note that

fz + 1 = fz

fz = ∑
n=1

∞

an exp−2πny + 2πinx

Ls, f = ∑
n=1

∞
an

ns "=" ∏
p prime

1 −
αp

ps

−1

1 −
βp

ps

−1

= ∏
p prime

1 −
αp

ps + 1
p2s−k−1

−1

The analytic properties of this one are known.



Modularity
For example, iff is a modular form of weightk = 2, then
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similar to elliptic curve. This was proved in the 1950s by Eichler-Shimura. The converse:
given an elliptic curve, is it the same as a modular formL-function (Taniyama-Shimura
Conjecture, proved by Weils in 1993 using Galois machinery). If the L-series has sufficiently
good properties, then it must come from somef. This is only for elliptic curves overQ. But
what about other fields? This is the modularity problem.

Example: the Selberg zeta function overSL2,Z.

Birch-Swinnerton-Dyer Conjecture
Assumef is a polynomial inQx,y. Does the equationfx,y = 0 have a rational

solution? Note that this is a plane curve inC2; assume that the curve is smooth. We desire
solutions inQ2. The geometry is studied inC2. In the case that the genus is zero
g = 1

2 d − 1d − 2, we have that the rational points form a group isomorphic toQ. If the
genus is> 1, then there are only finitely many rational points (Faltings: Mordell Conjecture
1974(?)). If the genus is1, the curve is elliptic, and we can write the equation as

y2 = 4x3 − g2x − g3.

This is a general formula for all elliptic curves, up to birational equivalence. We can give it a
group structure. The sum of two points is computing by looking at collinear points (sum of
two is the third point, after a reflection). This is the same operation on divisors given by the
Picard group. In particular,EQ = rational points on the curve∪ ∞, then it has an
abelian group structure. It turns out that it is always finitely generated, and

EQ = Z
r ⊕ F,

and the finite partF is easily determined. Masur showed there are only 15 possibilities for F.
The rankr is very hard to compute. It is conjectured (wildly believed)thatr may take any
nonnegative integer values. However, there are only known examples throughr = 18, and
then alsor = 28. If r is very large, there should be many rational solutions modulo p. This
also implies many solutions overFp. Even #EFp 

p should be large, so that
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should be large. In the 1960s, B-S-D noticed that the product
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through numerical calculations. This is unkown whether this is true. Letting

aEp = p + 1 − #EFp ,

we define
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Note that this is normalized so thats ↦ 2 − s yields a functional equation.
Now we apply the numerical calculation to get
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or
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This implies (using a Tauberian argument)

ords=1Ls,E = r.

This is conjectured but not known. The BSD conjecture is that

Ls,E = ∗s − 1r + O|s − 1|r+1,

where∗ is explicit. The (Tate-)Shafarevich group measures the failure of the local-global
principle. The cardinality of this group is a factor of∗. The analytic continuation ofLs,E
was proved by Wiles et. al., from his proof of the Taniyama-Shimura Conjecture in 1995. If
r = 0,1the conjecture is known. For other Shimura varieties, we canask the same (harder)
question.

Riemann Hypothesis
In 1859, Riemann published his only paper on number theory. TheRiemann hypothesis

states that all the nontrivial zeros ofζs lie on the critical lineRes = 1
2

. This implies the
Lindelöf hypothesis, the best rate of growth for primes, etc. This has been verified for the
zeross with |Ims| < 10000000000000. People have shown that at least 40% of the zeros
are on the critical line. Also we can show that there are no zerosσ + it for with
σ > 1 − c

logt3/5 . One application of the RH is the distribution formula for prime numbers.
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The RH implies
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(People have been able to showO xe−clogx3/5
.)


