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Let M be a compact Riemannian manifold with metric ds2 =
∑

i,j gijdxidxj and
Laplace-Beltrami operator ∆ : C∞(M) → C∞(M).

We consider

Tr(exp(it
√

∆)) =
∞∑

j=1

eiλjt =: e(t) = σ̂(t)

where the λj are the eigenvalues of
√

∆ and

σ(λ) =
∞∑

j=1

δ(λ− λj).

Note that e(t) is a tempered distributional function of t.
The Classical Trace Formula gives information about the singularities of e(t).
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Let H be the Hamiltonian

H(x, ξ) =
1
2

∑
gij

x ξiξj

where H : T ∗M → R.
Let X be the unit cosphere bundle of M , so X ⊂ T ∗M.
Let Ξ denote the Hamiltonian vector field generated by H, so

Ξ =
∑

i

∂H

∂ξi

∂

∂xi
− ∂H

∂xi

∂

∂ξi

Denote by
exp(tΞ) : X → X

the flow it generates, ie, geodesic flow. Denote

Φ(t, v) := exp(tΞ)(v).

Fix a free homotopy class C of closed loops on M.
Let T ∈ R+.
Define

ΦT (v) := Φ(T, v).

Define

WT (C) := {v ∈ X : Φ(T, v) = v, t 7→ π ◦ Φ(t, v) ∈ C} ⊂ X;

where π : T ∗M → M is the projection map.

The set WT (C) is the set of all initial co-velocities that are periodic with period T
and which, as closed loops, are contained in the homotopy class C.
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Recall

WT (C) := {v ∈ X : Φ(T, v) = v, t 7→ π ◦ Φ(t, v) ∈ C} ⊂ X.

The Clean Intersection Hypothesis requires that, for v in WT (C), the fixed point set
of d(ΦT )v : TvX → TvX must equal TvWT (C).

Let
F := I − d(ΦT ) : TvX → TvX.

The Clean Intersection Hypothesis just states that for v ∈ WT (C),

ker(Fv) = TvWT (C).

Note that if we take a curve v(t) in WT (C) then ΦT (v(t)) = v(t), which implies the
tangent space of WT (C) is automatically a subspace of the fixed point set.
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Recall

WT (C) := {v ∈ X : Φ(T, v) = v, t 7→ π ◦ Φ(t, v) ∈ C} ⊂ X.

Let dT (C) denote the dimension of WT (C).
Denote

L(C) := {T ∈ R+ : WT (C) 6= ∅}.
The set L(C) is just the set of lengths of closed geodesics in L(C). Denote

LM := ∪CL(C)(disjoint union).

This is the marked length spectrum.
We say T ∈ LM is nondegenerate if for all C such that T ∈ L(C), WT (C) satisfies

the CIH.

The work of Duistermaat-Guillemin showed

Trace Formula.

(1) The singular support of e(t) is contained in LM (Corollary 1.2 of DuG).
(2) If T is nondegenerate, then e(t) is a classical conormal distribution in a neigh-

borhood of T, and
(3) If T is nondegenerate, then the leading singularity of e(t) at T is a constant

multiple of the distribution

(t− T + i0)(dT−1)/2.

These three statements together with the calculation of constant are what is gen-
erally called The Trace Formula.

Note: The paper [GU], from which I took most of the above exposition, uses power
dT /2. I think the power above is correct, as can be seen on the next page.
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Theorem [DuG, Thm 4.5]. Assume that the set of period Ξ solution curves of period
T is a union of connected submanifolds Z1, Z2, . . . , Zr in X, each Zj being a clean fixed
point set for ΦT of dimension dj . Then there exists an interval around T in which no
other periods occur, and on such an interval we have

e(t) = σ̂(t) =
r∑

j=1

βj(t− T ),

where
βj(t) =

∫ ∞

−∞
αj(t)e−istds

with

αj(s) ∼
( s

2πi

)(dj−1)/2

i−σj

∞∑

k=0

αj,ks−k

as s → ∞ where dj = dim Zj and σj is a Morse index. Also, if dj is even, we let
(1/i)(dj−1)/2 = e−πi(dj−1)/4. Finally,

αj,0 =
1
2π

∫

Zj

dµj ,

where we describe µj below.

Remark. What I do in my paper is compute αj,0, which when multiplied by
(

1
2πi

)(dj−1)/2
i−σj

is (usually) the leading singularity. The key to doing this is understanding the density
µj .

5



Remark. Note that X is not symplectic, but T ∗M is symplectic.

Citation [DuG, p. 60]. Let N = T ∗M be a symplectic manifold, Φ = ΦT a symplec-
tomorphism of N and Z = WT (C) a clean fixed point set of Φ. The tangent space to Z
at each z ∈ Z possesses an intrinsic positive density, i.e. an intrinsic smooth positive
measure, denoted dµZ . In particular, let Z be a submanifold of X (unit cosphere bun-
dle) consisting of periodic Ξ solution curves of period T. If Z is clean for Φ : X → X
then

Z ′ = {(x, λξ) : λ ∈ R+, (x, ξ) ∈ Z}
is clean for Φ : T ∗M\0 → T ∗M\0. So dµZ′ is defined (in a moment). Dividing by |dq|
we get an intrinsic measure dµZ on Z.
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What is this intrinsic measure???

Lemma [BPU, Appendix]. Let Z be a set of periodic solution curves of period T. Fix
z ∈ Z. Denote

W = TzZ V = TzT
∗M.

Let Ω be the symplectic form on T ∗X. Since Z is clean,

W = ker(I − dΦT ).

Denote
F := I − dΦT .

Let E := {e1, . . . , ek} be an arbitrary basis of W. Let F := {f1, . . . , fk} be a basis of
W⊥ such that Ω(ei, fj) = δij , where W⊥ is the symplectic complement of W in V. Let
V := {v1, . . . , v2n−k} be a basis of a complement of W in V.

Let ν be an arbitrary half-density of V. Then

µ(E) =
ν(V ∧ E)

ν(F (V) ∧ F)

We call this the Duistermaat-Guillemin or DG denisty.
Note that F (V) is a basis of W⊥ (see [DGu p. 60] or [BPU p. 523]), and the

expression in the Lemma is independent of the choice of half-density ν and the choice
of F and V.
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Our approach will be to calculate α where FV ∧ F = αV ∧ E . We then have
∫

Zj

dµj =
∫

Zj

1√
|α|ds,

where ds is the Riemannian volume form on Zj coming from X. We refer to 1
|α|1/2 as

the DG-multiplier.
Finally, note that calculating TV requires calculating the derivative dΦT restricted

to a complement of the fixed points of dΦT . That is, we compute the Poincaré or first
return map on a complement of TzWT (C) in T ∗M.

Remark. Note that V above is symplectic and W is a fixed point set for Φ : V → V.
So to calculate µ, we must set W = Z ′, where Z ′ is described above. We then calculate
the DG-multiplier 1/sqrt|α| using W = Z ′, but then we then “divide out” by the added
direction, i.e., we take our volume on Z, not Z ′.
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Example: Flat Torus. We calculate the wave invariant associated to an arbitrary
element of the length spectrum of a flat torus.

The manifold L\Rn with the metric induced from the Euclidean metric on Rn is a
closed Riemannian manifold. Note that

X ∼= L\Rn × Sn−1 = {(p, v) : p ∈ L\Rn, v ∈ Rn, |v| = 1}.

Geodesics in Rn are just straight lines, so geodesics in L\Rn are projections of
straight lines. For (p, v) ∈ L\Rn × Sn−1,

Φ(t, (p, v)) = (p + tv, v).

Free homotopy classes of L\Rn correspond to conjugacy classes in L. As Rn is
abelian, the free homotopy classes of L\Rn are in one-to-one correspondence with the
elements of L.

Now, Φ(T, (p, v)) = (p, v) iff (p + Tv, v) = (p, v) iff Tv = l ∈ L. In this case, T = |l|
and v = l/|l|. The free homotopy class of the curve p+ tl/|l| corresponds to the element
l ∈ L. From this computation, we conclude that the length spectrum of L\Rn is

{|l| : l ∈ L}.

One easily concludes that for T = |l| and C = l,

Z = WT (C) = L\Rn × {l/|l|}.

Clearly, Z is diffeomorphic to L\Rn, and dim Z = n.
Let α(s) = (p(s), v(s)) be a curve in X with α(0) = vp = (p, v) ∈ Z. Then

ΦT (p(s), v(s)) = (p(s) + Tv(s), v(s)). Thus

d(ΦT )vp(p′(0), v′(0)) = (p′(0) + Tv′(0), v′(0)),

and
F (p′(0), v′(0)) = (−Tv′(0), 0),

where p′(0) + Tv′(0) ∈ TpL\Rn and v′(0) ∈ TvRn = Rn. From this we conclude that
(p′(0), v′(0)) is a fixed point of dΦT iff it is tangent to Z, ie, T is clean for all T in the
length spectrum.
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We now compute the wave invariants. Recall that the symplectic form on TRn,
obtained from T ∗Rn via the musical isomorphisms, is just

Ω ((A,B), (A′, B′)) = 〈A, B′〉 − 〈B,A′〉 ,

for A, B ∈ Rn.
Let {e1, · · · , en} be an orthonormal basis of Rn such that e1 = l/|l|. We must amplify

Z to Z ′, ie,
Z ′ = L\Rn × lR+.

We set
E = {(e1, 0), · · · , (en, 0), (0, e1)}.

Then using Ω,
F = {(0, e1), · · · , (0, en), (−e1, 0)}.

We set
V = {(0, e2), · · · , (0, en)}.

We must calculate FV ∧ F as a multiple of V ∧ E , up to sign. Now FV ∧ F equals

F (0, e2) ∧ · · · ∧ F (0, en) ∧ (0, e1) ∧ · · · ∧ (0, en) ∧ (−e1, 0)

= (−τe2, 0) ∧ · · · ∧ (−τen, 0) ∧ (0, e1) ∧ · · · ∧ (0, en) ∧ (−e1, 0)

= ±τ (n−1)V ∧ E .

Thus, the DG-multiplier is 1
τ(n−1)/2 , and the wave invariant associated with τ = |l|

and l ∈ L is

Wave(|l|, l) =
Vol(L\Rn)

(2πiτ)(n−1)/2
.

If we sum up over all free homotopy classes that contain a closed geodesic of length
τ, we obtain the wave invariant

Wave(τ) =
Vol(L\Rn)

(2πiτ)(n−1)/2

∑

l∈L,|l|=τ

1 =
mult(τ)

(2πiτ)(n−1)/2
Vol(L\Rn).

Note that we may add up over the free homotopy classes since the dimension of WT (C)
is independent of the length τ. Also, the Morse index for periodic geodesics is zero in
this case. ¤
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Introduction of my Paper.
The spectrum of a closed Riemannian manifold (M, g), denoted spec(M, g), is the

collection of eigenvalues of the Laplace–Beltrami operator ∆ acting on smooth func-
tions. Two manifolds (M, g) and (M ′, g′) are isospectral if spec(M, g) = spec(M ′, g′).
The length spectrum of (M, g), denoted by spec[L](M, g), is the collection of lengths of
smoothly closed geodesics of (M, g), counted with multiplicity. The multiplicity of a
length is defined as the number of free homotopy classes of loops containing a closed
geodesic of that length. The absolute length spectrum of a Riemannian manifold (M, g),
denoted specL(M, g), is the set of lengths of smoothly closed geodesics with no multi-
plicity assigned. (The absolute length spectrum is also referred to in the literature as
the weak length spectrum.)

A major open question in spectral geometry is the precise relation between the
Laplace spectrum on functions and the (absolute) length spectrum. Using the heat
equation, Colin de Verdière [CdV] has shown that generically (in the family of all Rie-
mannian manifolds), the Laplace spectrum determines the absolute length spectrum.
This result can also be obtained from the classical (wave) trace formula [DGu] (de-
scribed below). In the case of compact, hyperbolic manifolds, this arises from the
Selberg Trace Formula [Sel]. (See also [Ch, Chapter XI].)

In sharp contrast, Miatello and Rossetti [MR] have constructed pairs of compact flat
manifolds that are isospectral on one-forms but which do not have the same absolute
length spectrum. (See also [CR1,2].) There is no known example of a pair of manifolds
that are isospectral on functions but with unequal absolute length spectra.

Also in contrast, C. S. Gordon [G1] has constructed pairs of isospectral Heisenberg
manifolds that have unequal multiplicities in the length spectrum, and the author [Gt2]
has constructed other higher-step nilmanifolds with this property. These examples are
of great interest, as it has been shown that all known methods for producing examples
of isospectral nilmanifolds necessarily yield examples with the same absolute length
spectrum [G1], [GtM3]. A Riemannian two-step nilmanifold is a closed manifold of
the form (Γ\G, g), where G is a simply connected two-step nilpotent Lie group, Γ is
a uniform (i.e., Γ\G compact) discrete subgroup of G, and g is a left invariant metric
on G, which descends to a Riemannian metric on Γ\G that we also denote by g. A
Heisenberg manifold is a two-step Riemannian nilmanifold whose covering Lie group G
is one of the (2n + 1)-dimensional Heisenberg Lie groups.

The purpose of this paper is to understand the behavior of the length spectrum on the
isospectral Heisenberg manifolds of Gordon in particular, and on two-step nilmanifolds
in general. Our approach is to compute certain wave invariants, which are defined
below. En route to calculating the wave invariants on two-step nilmanifolds, we must
calculate the Duistermaat-Guillemin density. This in turn requires us to calculate the
first return or Poincaré map. We apply these calculations to the Heisenberg manifolds
of Gordon and show how a pair of manifolds can have the same Laplace spectrum, i.e.,
the same wave invariants, and yet have unequal multiplicities in the length spectrum.
See (3.?) for conclusions about the definition of the multiplicity of a length in the
length spectrum.
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For (M, g) a Riemannian manifold, define

eM (t) = trace(exp(it
√

∆)) =
∑

λ∈spec(M,g)

eit
√

λ.

This is a tempered distribution that is determined by the Laplace spectrum. That is,
if M and M ′ are isospectral, then eM (t) = eM ′(t). The classical trace formula, arising
from the study of the wave equation, provides information about the singularities of
eM (t). In particular [DGu],

(1) the singular support of eM (t) is contained in specL(M, g), and
(2) if τ is in specL(M, g) and τ satisfies a Clean Intersection Hypothesis, then eM (t)

is a classical conormal distribution in a neighborhood of τ, and the singularities
of eM (t) at τ provide geometric information about (M, g), the wave invariants.

See Section 1.1 below for more details about eM (t). Good references for distributions
and singular support are [Si] and [St].

The advantage of working with nilmanifolds is that they are “getatable” in the sense
that the spectrum [P3],[GW3] and the length spectrum [E1], [GtM1] are explicitly
computable. Moreover, the generic results of Colin de Verdière and Duistermaat-
Guillemin require that all closed geodesics be isolated and that lengths be multiplicity
free. Nilmanifolds possess a great deal of symmetry so that closed geodesics always
come in large dimensional families, thus failing these generic hypotheses. Consequently,
generic results relating the Laplace and length spectra say nothing about the many
known examples of isospectral nilmanifolds and other isospectral families of manifolds
[DG1,2], [O], [P1,2,3,4], [GW1,2,3], [G1,2,3], [E1].

This paper, while self-contained, is a continuation of [Gt6], in which the author
computes a necessary and sufficient condition for a two-step nilmanifold to satisfy the
Clean Intersection Hypothesis. The computations of [Gt6] are closely related to those
here, and we use the necessary and sufficient condition to avoid two-step nilmanifolds
failing the Clean Intersection Hypothesis in this paper. Of interest is the fact that
the Heisenberg manifolds of Gordon that exhibit unequal multiplicities in the length
spectrum are not related to the Clean Intersection Hypothesis. In particular, lengths
of a Heisenberg manifold that are “unclean” are associated to free homotopy classes
coming from central elements of the fundamental group. Whereas lengths of a Hei-
senberg manifold that exhibit unequal multiplicities in the length spectrum come from
noncentral elements of the fundamental group.

This paper is organized as follows. In Section 1 we review necessary background
information on the wave invariants and nilmanifolds. Large parts of Section 1 sum-
marize material included in more detail in [Gt6]. We include in Section 1 a warm up
calculation of the wave invariants on the n-dimensional flat torus. We end Section 1
with the computation of the wave invariants of interest on the Heisenberg manifolds
of Gordon. Because of broad interest in Heisenberg manifolds, the author attempts
to present this example so that a reader with a background in differential geometry
may find it readable without getting bogged down with the many technical details of
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two-step nilmanifolds. In Section 2 we calculate the first return or Poincaré map and
the Duisermaat-Guillemin density for all two-step nilmanifolds. The Poincaré map is
quite explicit, but we are not able to get a closed form for the Duistermaat-Guillemin
density in all cases. In Section 3 we examine other special cases, including the wave
invariants on two-step nilmanifolds with a one-dimensional center, and the Duisermaat-
Guillemin density for a specific 5-dimensional example with a two-dimensional center.
The 5-dimensional example exhibits many of the subtleties possible in these calcula-
tions.

The author wishes to thank Alejandro Uribe for inspiring conversations about and
invaluable references for this paper.
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