
UNBOUNDED OPERATORS ON HILBERT SPACES

EFTON PARK

Let X and Y be normed linear spaces, and suppose A : X −→ Y is a linear map.
Define

‖A‖op = sup

{
‖Ax‖
‖x‖

: x 6= 0

}
= {‖Ax‖ : ‖x‖ ≤ 1} = {‖Ax‖ : ‖x‖ = 1}

If ‖A‖ <∞, we call A a bounded (linear) operator.

Theorem 1. The following are equivalent:

(a) A is bounded;
(b) A is continuous at 0;
(c) A is uniformly continuous.

Many commonly occurring operators are bounded; here is an example that is
unbounded.

Example 2. Let B be a vector space basis (or a Hamel basis, as it is often called)
of L2(R) and choose a sequence {fn} of distinct elements of B. By dividing each
fn by its norm if necessary, we may assume that each fn has norm 1. Define a
linear map F : L2(R) −→ C by setting Ffn = n for each n and Fg = 0 for all other
elements in B. Then F is unbounded.

From now on, we restrict our attention to linear operators from a Hilbert space
H to itself. If A : H −→ H is a bounded linear map, its adjoint A∗ : H −→ H
is determined by the requirement that 〈Af, g〉 = 〈f,A∗g〉 for all f and g in H.
Interestingly, the existence of an adjoint automatically implies that A is linear.

Theorem 3. Let A : H −→ H be a function, and suppose there exists a function
B : H −→ H with the property that 〈Af, g〉 = 〈f,Bg〉 for all f and g in H. Then
A is linear.

Proof. For all f , g, and h in H and complex numbers α and β,

〈A(αf + βg), h〉 = 〈αf + βg,Bh〉
= α〈f,Bh〉+ β〈g,Bh〉
= α〈Af, h〉+ β〈Ag, h〉
= 〈αAf + βAg, h〉,

whence A(αf + βg) = αAf + βAg. �

In fact, more is true.

Theorem 4 (Closed Graph Theorem). Let X and Y be Banach spaces and suppose
A : X −→ Y is a linear map with the following property: if {xn} is a sequence in
X converging to some x in X and {Axn} converges to some y in Y , then y = Ax.
Then A is bounded.
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Theorem 5. Let A : H −→ H be a function, and suppose there exists a function
B : H −→ H with the property that 〈Af, g〉 = 〈f,Bg〉 for all f and g in H. Then
A is bounded.

Proof. Let {fn} be a sequence in H converging to f , and suppose that {Afn}
converges to g. Then for all h in H,

〈g, h〉 = lim
n→∞

〈Afn, h〉 = lim
n→∞

〈fn, Bh〉 = 〈f,Bh〉 = 〈Af, h〉,

and therefore Af = g. �

Therefore if one wants to study unbounded linear operators on a Hilbert space
H that have an adjoint, such operators can not be defined on all of H.

Definition 6. Let H be a Hilbert space. An (unbounded) linear operator on H
consists of a dense linear subspace D(A) and a linear map A : D(A) −→ H. The
linear subspace D(A) is called the domain of A.

Example 7. Let φ be a continuous unbounded function on R, and define M c
φ on

L2(R) by (M c
φf)(x) = φ(x)f(x) with domain D1 consisting of compactly supported

continuous functions on R.

Example 8. Let φ be a continuous unbounded function on R, and define Mφ on
L2(R) by (Mφf)(x) = φ(x)f(x) with domain

D2 = {f ∈ L2(R) : φf ∈ L2(R)}.

Example 9. D on L2(0, 1), defined by Df = f ′ with domain C∞0 (0, 1).

We shall see that different choices of domain can give a linear operator very
different properties.

Definition 10. Let A, B be linear operators on H. We say that A and B are
equal if D(A) = D(B) and Af = Bf for all f in D(A). We will say that B is
an extension of A if D(A) ⊆ D(B) and Af = Bf for all f in D(A); if B is an
extension of A, we write A ⊆ B.

Note that in the examples above, the operator B is an extension of A.

Definition 11. The graph of a linear operator A is the set

G(A) = {(f, Tf) : f ∈ D(A)}.

Note that if A ⊆ B, then G(A) ⊆ G(B) as sets.

Definition 12. A linear operator A is closed if G(A) is a closed subset of H⊕H.

Theorem 13. Let A be a linear operator on H. The following are equivalent:

(a) A is closed;
(b) If {fn} is a sequence in D(A) converging to some f in H and if {Afn}

converges to some g in H, then f is in D(A) and Af = g;
(c) The linear space D(A) is a Hilbert space for the inner product

〈f, g〉A := 〈f, g〉+ 〈Af,Ag〉.

Definition 14. A linear operator is closable if it has an extension that is closed.

Theorem 15. Let A be a linear operator on H. The following are equivalent:

(a) A is closable;
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(b) If {fn} is a sequence in D(A) converging to 0 and if {Afn} converges to
some g in H, then g = 0;

(c) The (set-theoretic) closure of G(A) is the graph of a linear operator Ā.

If A is closable, the operator Ā in the previous theorem is unique and is called
the closure of A. The operator Ā is minimal in the following sense: if B is an
extension of A that is closed, then B is also an extension of Ā.

Our operator Mφ is closed. The other examples are not closed, but they are
closable. In fact, one has to do some amount of work to construct an unbounded
operator that is not closable.

Example 16. Choose a linear subspace D of H, an unbounded linear functional F
on D, and a vector h 6= 0 in H. Define a linear operator A with domain D by the
formula Tf = F (f)h. Because F is not continuous at 0, there exists a sequence
{fn} in D with the property that {fn} converges to 0, but {F (fn)} does not converge
to 0. By passing to a subsequence if necessary, we may assume that there exists a
constant c > 0 such that |F (fn)| ≥ c for all natural numbers n. Define

gn =
xn

F (xn)
.

Then {gn} converges to 0, while

T (gn) = T

(
fn

F (fn)

)
=

1

F (fn)
T (fn) =

1

F (fn)
F (fn)e = e 6= 0.

We next discuss adjoints of unbounded operators.

Definition 17. Let A be a linear operator on a Hilbert space H. Set

D(A∗) = {g ∈ H : there exists h ∈ H such that 〈Af, g〉 = 〈f, h〉 for all f ∈ D(A)}.
Because D(A) is dense in H, the element h, if it exists, is unique. The operator A∗

with domain D(A∗) defined by A∗h = g is called the adjoint of A.

By definition, we have the equation

〈Af, g〉 = 〈f,A∗g〉
for all f in D(A) and g in D(A∗).

It is possible that D(A∗) is not dense in H. In fact, for our example T above,
D(A∗) = 0.

In general, it is very difficult to explicitly determine the elements of D(A∗), but
in certain cases we can do this.

Theorem 18. (Mφ)∗ = Mφ.

Proof. Integration by parts shows that (Mφ)∗ is an extension of Mφ:

〈Mφf, g〉 =

∫
R
φfg dx =

∫
R
fφg dx = 〈f,Mφg〉,

and an easy argument with characteristic functions shows that these two operators
are equal. �
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Theorem 19. Let A be an operator on H.

(a) A is closable if and only if D(A∗) is dense in H.
(b) If A is closable, then (A)∗ = A∗, and A = A∗∗.
(c) A is closed if and only if A = A∗∗.

We can use this part (a) of this theorem to prove that i ddx on (0, 1) is closable.

To come up with a domain for which i ddx is closed, we begin with a definition. Let
us consider another example.

Definition 20. A function f on [0, 1] is absolutely continuous if there exists a
function h in L1(0, 1) such that

f(x) = f(0) +

∫ x

0

h(t) dt

for every x in [0, 1].

Absolutely continuous functions are continuous, and are differentiable almost
everywhere; in fact, f ′(x) = h(x) almost everywhere. For this reason, we typically
write f ′ for h. Let AC[0, 1] denote the set of absolutely continuous functions on
[01], and define

H1(0, 1) = {f ∈ AC[0, 1] : f ′ ∈ L2(0, 1)}.

Theorem 21. Let D be the operator i ddx on L2(0, 1) with domain H1(0, 1). Then
D is closed.

Before considering more examples, we need the notion of a multi-index.

Definition 22. A d-dimensional multi-index is a d-tuple α = (α1, α2, . . . , αd) of
nonnegative integers. We set |α| = α1 + α2 + · · ·+ αd.

Definition 23. Let Ω be an open subset of Rd. For each d-dimensional multi-index
α, set

∂α =
∂α1

∂xα1
1

∂α2

∂xα2
2

· · · ∂
αd

∂xαd

d

and
Dα = (−i)|α|∂α.

A n-th order linear partial differential operator on Ω is an operator with domain
C∞0 (Ω) and formula

L =
∑
|α|≤n

aαD
α

for smooth functions aα in C∞(Ω). The formal adjoint of L is the operator

L+ =
∑
|α|≤n

Dαaα =
∑
|α|≤n

a+αD
α.

We say L is formally self-adjoint if L+ = L.

By integrating by parts, we can show that

〈Lf, g〉 = 〈f, L+g〉
for all f and g in C∞0 (Ω).

We let L0 and L+
0 respectively denote L and L+ with C∞0 (Ω) as its domain.

The closure of the graph of L0 and L+
0 determine the minimal extensions Lmin and
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L+
min. There also exist maximal extensions Lmax and L+

max; these are defined using
distribution theory. The following equalities hold:

(L+
0 )∗ = Lmax, (Lmax)∗ = Lmin.

Definition 24. Let A be a linear operator on H.

(a) A is symmetric if A ⊆ A∗.
(b) A is self-adjoint if A = A∗.
(c) A is essentially self-adjoint if its closure A is self-adjoint.

The operator Mφ is self-adjoint if φ is real-valued, and i ddx is self-adjoint with

the domain H1(0, 1). The relationship between these three notions is complicated
in general. For example, as we shall see, there are symmetric operators that are
not self-adjoint. To explore this further, we need some terminology.

Definition 25. Let A be a linear operator on H. A complex number λ is a regular
point for A if there exists a positive number cλ with the property that

‖(A− λI)f‖ ≥ cλ‖f‖
for all f in D(A). We let π(A) denote set of regular points of A. For λ in π(A),
we define the defect number of dλ(A) of T to be the dimension of the orthogonal
complement of the range of T − λI.

Theorem 26. Let A be a linear operator on H.

(a) π(A) is a nonempty open set in C;
(b) A complex number λ is in π(A) if and only if (A−λI) has a bounded inverse

on the range of A− λI.
(c) If A is closable, then dλ(A) is locally constant.

The set of regular points of A is related to another quantity:

Definition 27. A complex number λ belongs to the resolvent set ρ(A) of A if
A−λI has a bounded inverse defined on all of H. The complement of the resolvent
is called the spectrum of A and is denoted σ(A).

Proposition 28. ρ(A) = {λ ∈ π(A) : dλ(A) = 0}.

Proposition 29. If A is symmetric, then C\R is contained in π(A).

The number dλ(A) is constant for =λ > 0, and also constant for =λ < 0. We
shall call these numbers the deficiency indices of A and denote them d+(A) and
d−(A), respectively.

Observe that if π(A) contains any real number, then d+(A) = d−(A).
Because we are requiring our operators to be densely defined, when A is sym-

metric we can make alternate definitions

d+(A) = dim ker(A∗ − iI)

d−(A) = dim ker(A∗ + iI)

Theorem 30. Let A be a symmetric closable operator on H.

(a) A has a self-adjoint extension if and only if d+(A) = d−(A).
(b) A is essentially self-adjoint if and only if d+(A) = d−(A) = 0.
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Example 31. Let I denote one of these three intervals:

• (0, 1) (or (a, b) for any a < b in R);
• (0,∞);
• R.

Define A by Af = −if ′ and take the domain of A to be H1(I). Then A ⊆ A∗, so
A is symmetric. Furthermore, g is in the kernel of A∗ ∓ iI is and only if g is in
D(A∗) and g′ = ±g on I.

If I = (0, 1), then the kernel of A∗∓iI is spanned by e±x. Both of these functions
are in H1(I), so d+(A) = d−(A) = 1.

If I = (0,∞), then e−x is in D(A∗), but ex is not, because its derivative is not
in L2(0,∞). Therefore d+(A) = 1 and d−(A) = 0.

If I = R, then neither ex nor e−x is in D(A∗) so. Therefore d+(A) = d−(A) = 0.


