
SMOOTHING THEOREMS IN ALGEBRAIC GEOMETRY

SCOTT NOLLET

Abstract. The purpose of this series of talks is to state a few of the standard smooth-
ing theorems in algebraic geometry, such as Hironaka’s theorem, Bertini theorems, and
smoothing of degeneracy loci of maps between vector bundles. In the context of these
results, I’ll then explain recent joint work with Prabhakar Rao.

1. Introduction

The main objects of study in algebraic geometry are smooth projective varieties X ⊂ Pnk
over an algebraically closed field k (feel free to take k = C). In recent decades, there has
been a lot of work done in trying to understand families of these varieties. Unlike in
differential geometry or topology, in algebraic geometry we can often construct parameter
spaces for these varieties, or moduli spaces, which turn out to be varieties (or schemes)
themselves. Even if one is only interested in smooth projective varieties, one is forced to
deal with singular degenerations that appear in the boundary of these moduli spaces if
they are proper.

Example 1.1. Each conic X ⊂ P2 is defined by a nonzero homogeneous polynomial
f(x, y, z) of degree two, where x, y, z are homogeneous coordinates for P2. Two such
polynomials f and g define the same curve X if and only if f = λg for some nonzero scalar
f ∈ k∗, defining an equivalence relation f ∼ g. If V is the vector space of homogeneous
degree two polynomials with basis x2, y2, z2, xy, xz, yz, then all degree two curves are
parametrized by (V − {0}/ ∼) = P5, the map is given by

f(x, y, z) = ax2 + by2 + cz2 + dxy + exz + fyz 7→ (a, b, c, d, e, f)

This is a simple example of a Hilbert scheme.

We may express f uniquely in the form f = (x, y, z)M(x, y, z)T , whereM is a symmetric
matrix. Orthogonally diagonalizing M gives a diagonal matrix, thus there is a change
of coordinates for which f(x, y, z) = x2 + y2 + z2, x2 + y2 or x2. Each possibility can be
visualized geometrically:

(A) Writing x2+y2+z2 = (x+ iy)(x− iy)−(iz)2 = XY −Z2 gives another description
of a conic in family (A). Some calculation shows that Z(XY −Z2) ⊂ P2 is exactly
the image of the embedding P1 ↪→ P2 given by (s, t) 7→ (s2, t2, st), hence the conic
in family (A) is isomorphic to P1, a smooth rational curve.

(B) In this case we have the equation XY = 0, which gives two lines meeting at a
point. This conic is not smooth, being singular at the intersection point, it is also
not a variety (see definition below), it is a union of two varieties.

(C) The equation X2 = 0 is a doubling of the Y -axis. Classically this might be
discounted or maybe thought of as a line, but using Grothendieck’s foundations of
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scheme theory, it gives a closed subscheme of P2 supported on a line, but having
more “scheme structure”, i.e. having a different structure sheaf of locally rational
functions.

Thus using our parameter space we can stratify our conics as P5 = (A)∪(B)∪(C). What
is the nature of this stratification? If (P2)∨ is the space of lines in P2, which is parametrized
by P2 itself via ax+ by + cz = 0 7→ (a, b, c), we have a map Φ : (P2)∨ × (P2)∨ → P5 given
by

(L1, L2) 7→ L1 ∪ L2

This is a 2-1 map away from the diagonal, so the image of Φ has dimension 4 and consists
of (B) ∪ (C). We can do better than this, however: (B) ∪ (C) is precisely the locus of
P5 where detM = 0, which gives an equation of degree three, therefore (B) is a cubic
hypersurface. Furthermore, (C) is given by the vanishing of the three 2 × 2 minors of
M , hence is the intersection of three quadric hypersurfaces and since dimC = 2, it is
a complete intersection, so (C) ⊂ P5 is a complete intersection of three quadrics and
deg(C) = 8. I suspect that (B) is a nonsingular hypersurface except along (C). It follows
that (A) is a dense Zariski open subset of P5.

Remark 1.2. Although the proof is different, this example is also correct if char k = 2.
Mohan-Kumar supplied a proof for Luis Aguirre to use in his proof in his 2019 PhD thesis.

We see in this example that the singular conics in families (B) and (C) can be deformed
in the parameter space P5 to the smooth conics in family (A), so they are smoothable.
In general, given a variety or a family of varieties, it is useful to know when the general
member is smooth, as occurred in Example 1.1. If not, can one modify the general singular
member to obtain a smooth variety? These are the kinds of questions the smoothing
theorems attempt to answer. Here’s a brief outline:

2. Singularities in algebraic geometry.
3. Theorems of Hironaka and Bertini, degeneracy loci of maps of vector bundles.
4. Recent work with Rao.

2. Singularities in algebraic geometry

In this section we define singular and smooth points on an algebraic variety, illustrating
with various examples.

2.1. Affine varieties. For a field k, we define affine n-space An
k to be the set kn with

the Zariski topology, meaning that the closed sets are the common zero locus of a family
of polyonomials fα ∈ k[x1, . . . , xn], i.e. the closed sets Z ⊂ An are

Z(fα) = {a ∈ An : fα(a) = 0 for all α}.

Given a closed set Z ⊂ An, we define IZ = {f ∈ k[x1, . . . , xn] : f(a) = 0 for all a ∈ Z}. It
is easy to show that IZ is an ideal. If k = k is algebraically closed, Hilbert’s Nullstellensatz
tells us that Z(IZ) = Z, so that we may take the fα from the ideal IZ . Furthermore
Hilbert’s basis theorem says that every ideal in k[x1, . . . , xn] is finitely generated, so that
we may take the fα from a finite generating set for IZ . The closed set Z ⊂ An is an
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affine variety if IZ is a prime ideal. Recall that an ideal P ⊂ k[x1, . . . , xn] is prime if
fg ∈ P ⇒ f ∈ P or g ∈ P .

Example 2.1. In A2 with coordinates x, y, the ideals (y − x2) and (xy − 1) are prime
and give affine conic varieties, while the ideal (xy) is not prime. Looking at Example 1.1,
you might wonder about the non-prime ideal (x2). It doesn’t show up in this context,
because Z(x2) = Z(x), so when we take the ideal defined by closed set, we get the prime
ideal (x). On the other hand, (x2) defines a closed subscheme Z ⊂ A2 in the language of
Grothendieck’s scheme theory. Topologically Z is the same as Z(x), but has a different
structure sheaf of regular functions.

2.2. Singular points on affine varieties. We begin with an example for motivation.

Example 2.2. Consider the variety X ⊂ A3
R defined by the equation f = x2+y2−z2 = 0,

the quadric cone. If we asked our Calculus III students about tangent planes to V , they
would take a point a = (a1, a2, a3) ∈ V and write down the equation

∇f(a) · (x− a) = 0.

This works well enough except when a = (0, 0, 0), when their “tangent plane” would turn
out to be all of R3 because all the partials of f vanish there. A point on a variety should
be smooth or nonsingular if it’s tangent space has the right dimension.

The story over an arbitrary algebraically closed field k is the same. If X ⊂ An
k is defined

by equations fj, the tangent space to X at a is defined by

TX,a = {x ∈ An :
n∑
i=1

∂fj/∂xi(a)(xi − ai) = 0 for all fj ∈ IV }

and a is a nonsingular or smooth point of V if dimTX,a = dimX. Over an algebraically
closed field, there is a good theory of dimension for varieties (and Zariski closed subsets),
namely dimV = tr.deg.kK(X), where K(X) is the function field of X, i.e. the fraction field
of the integral domain k[x1, . . . , xn]/IX . Since the tangent space TX,a is defined by linear
equations whose coefficients come from the derivative matrix (∂fj/∂xi), the dimension of
TX,a is n− rank (∂fj/∂xi)(a). Thus a ∈ X is nonsingular point if

n− dimX = rank(∂fj/∂xi)(a).

For r ∈ Z, the set of points {a : rank(∂fj/∂xi)(a) < r} is a Zariski closed set, because
it is defined by the vanishing of the r × r minors, which are polynomial equations. It
follows that the locus of smooth points in X is Zariski-open in X, in other words, the set
of singular points SingX ⊂ X is a Zarsiki closed subset.

Theorem 2.3. If X ⊂ An is an algebraic variety over k = k, then SingX is a proper
closed subset of X, so X has a dense open subset of nonsingular points.

Proof. The idea is to show that X is birational to a hypersurface in AdimX+1 to reduce to
the case when X is defined by a single equation f = 0. Then if SingX = X, the partials
∂f/∂xi lie in (f), contradicting the degrees. �
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Example 2.4. A few plane curve singularities at the origin for X ⊂ A2. See figure 1.

(a) xy = x6 + y6 defines a node.
(b) x3 = y2 + x4 + y4 defines a cusp.
(c) x2 = x4 + y4 defines a tacnode.
(d) x2y = xy2 + y4 defines a triple point.

Example 2.5. We look examine the cusp Z = Z(x2− y3) ⊂ C2, following Milnor [5] and
Mumford [6, p. 13]. Let B = {(x, y) : |x|2 + |y|2 ≤ 1 be the closed unit ball about the
origin in C2 ∼= R4. Then ∂B ∼= S3 meets Z transversely in a one dimensional manifold, i.e.
Z ∩ ∂B is a real curve on S3, a possibly interesting knot or link. For t ∈ C, the complex
line x = ty intersects the curve x2 = y3 in three points: substitution gives t2y2 = y3 which
has a double root y = 0 and simple root y = t2, so that x = t3. Thus each point on Z is
uniquely written x = t3, y = t2 for t ∈ C. Now (x, y) = (t3, t2) ∈ ∂B iff |t|6 + |t|4 = 1. If
λ is the unique positive solution to λ6 + λ4 = 1, then

Z ∩ ∂B = {(λ3e3iθ, λ2e2iθ) : 0 ≤ θ ≤ 2π}.

Observe that Z lies on the torus T ⊂ ∂B given by

T = {(x, y) : |x| = λ3, |y| = λ2} ⊂ ∂B ∼= S3

and we see that Z ∩ ∂B is the torus knot corresponding to the rational slope 3/2, so it
is the trefoil knot. See figure 2. It appears that the singularity xr − ys could be treated
similarly for (r, s) = 1. It might be interesting to determine exactly which knots and links
arise from singularities of complex plane curves. The node xy = 0 gives not a knot, but
a link.

2.3. Singular points on Projective varieties. We define complex projective space by

PnC = Cn+1 − (0, 0, . . . , 0)/ ∼

where (a0, . . . , an) ∼ (b0, . . . , bn) if there is λ ∈ C∗ for which (a0, . . . , an) = λ(b1, . . . , bn).
The vanishing of a point (a0, . . . , an) ∈ Pn at a polynomial f(x1, . . . , xn) is not well-
defined unless the polynomial f is homogeneous, meaning that is a linear combination
of monomials of total degree d, or equivalently if f(λx) = λdf(x) for all x ∈ An+1. A
homogeneous ideal I ⊂ S is one that can be generated by homogeneous polynomials.
Now we can define zero sets X = Z(fα) ⊂ Pn of a family of homogeneous polynomials
fα and take these as the closed sets for the Zariski topology on Pn. As before, we can
always take the fα to be a finite set. Hilbert’s Nullstellensatz gives a bijection between
zero sets and radical homogeneous ideals I ⊂ S, except for the irrelevant maximal ideal
(x0, x1, . . . , xn) whose zero set does not correspond to any point in Pn. The homogeneous
coordinate ring for Pn is S = C[x0, . . . , xn], now considered as a graded ring

S =
⊕
d≥0

Sd

where Sd is the vector space of homogeneous forms of degree d.

Definition 2.6. A closed set X ⊂ Pn is a variety if IX is a homogeneous prime ideal.
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Example 2.7. Looking at Example 1.1, we see that only conics of type A are varieties,
because the ideals (xy) and (x2) are not prime, whereas (xy−z2) is a prime ideal because
xy − z2 is irreducible.

To define singular and nonsingular points, we use the standard affine cover of Pn. The
Zariski closed set Z(x0) is the same as the space Pn−1 obtained by ignoring one variable
and the open compliment Ux0 = Pn − Z(x0) is homeomorphic to Cn with its Zariski
topology: we define a map φ : Ux0 → An and its inverse by

φ(x0, . . . xn) = (x1/x0, . . . , xn/x0)

φ−1(y1, . . . , yn) = (1, y1, . . . , yn)

These are two-sided inverses, giving a bijection of sets. For continuity, notice that for
f ∈ C[y1, . . . , , yn] of degree d, the polynomial F (y0, . . . , yn) = yd0f(y1/y0, . . . , yn/y0) is
homogeneous of degree d and φ−1(Z(f)) = Z(F ), showing continuity of φ. Similarly if F
is homogeneous of degree d, we can put f(y1, . . . , yn) = F (1, y1, . . . , yn) and observe that
φ(Z(F ) ∩ An) = Z(f), establishing bicontinuity. If we do the analogous construction to
build Uxi , then Pn = ∪iUxi is an open affine cover of projective space. If X ⊂ Pn is a
projective variety, then X has the open cover X ∩ Uxi so we may locally consider X as a
subset of An and use the coordinates there to determine smoothness of points.

Example 2.8. Take X ⊂ P2 to be the conic xy − z2 = 0. When we restrict X to the
open affine Ux ∼= C2, the equation becomes y − z2 = 0 and we see a standard parabola.
Similarly the restriction of X to Uy has equation x−z2. The restriction to Uz has equation
xy − 1 = 0 and we get a hyperbola.

Remark 2.9. One can also give a smoothness criterion directly for a projective variety. If
X ⊂ Pn is a projective variety defined by homogeneously generated ideal IX = (f1, . . . , fr),
then p ∈ X is a smooth point if and only if

codim(X,Pn) = rank(∂fj/∂xi(p)).

The proof uses Euler’s formula, which says that if f(x0, . . . , xn) is a homogeneous poly-

nomial of degree d, then
n∑
i=0

xi∂f/∂xi = df .

2.4. Zariski’s theorem and regular local rings. Grothendieck’s scheme theory foun-
dations for algebraic geometry dramatically changed the field in the early 1960s. His
theory is based on commutative algebra. The local model for a scheme is the spectrum
of a commutative ring A, that is X = SpecA = {p : p ⊂ A is a prime ideal} as a topo-
logical space equipped with a structure sheaf OX of regular functions. The dimension of
X is the dimension of the ring A, which is the longest length of a chain of prime ideals
contained in A. This allows interaction with number theory, because one can consider
schemes like SpecZ. The definition of nonsingular point is not applicable to general
schemes not embedded in An

k . In this section we mention Zariski’s theorem and how to
define a nonsingular scheme.

Let p = a be a point on a variety X ⊂ An. An important object in algebraic geometry
is the local ring of germs of regular functions at a, it is defined as follows. The point a
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corresponds to the maximal ideal m = (x1 − a1, . . . , xn − an) ⊂ k[x1, . . . , xn], which cor-
responds to the maximal ideal m ⊂ AX = k[x1, . . . , xn]/IX . If we invert the polynomials
in A/IX which do not vanish at a, or equivalently the polynomials not in m, we obtain a
the ring

OX,p = {f
g

: f, g ∈ A/IX , g 6∈ m}

In this ring, mOX,p is the unique maximal ideal, thus OX,p is a local ring. Geometrically,
the local ring sees the variety X from the perspective of the point p. Zariski characterized
whether p is a nonsingular point on X in terms of the structure of the ring OX,p.

Theorem 2.10. Let X ⊂ An be a variety of dimension d and p ∈ X with local ring OX,p
having maximal ideal m. Then p is a nonsingular point of X if and only if dimkm/m

2 = d.

A local ring (A,m, k) is a regular local ring if dimA = dimkm/m
2, where k = A/m is

the residue field. Thus the smooth points p ∈ X are precisely those for which OX,p is a
regular local ring. This definition extends to arbitrary schemes.

Example 2.11. Let’s compare the algebraic version by going back to the previous exam-
ple. Take p = (0, 0) on the conic y − z2 = 0. The corresponding maximal ideal is (x, y),
so the local ring at p is

OX,p = {f
g

: f, g ∈ k[y, z]/(y − z2), g 6∈ (x, y)} = ((k[y, z]/(y − z2))(y,z)

but k[y, z]/(y − z2) ∼= k[z] with corresponding maximal ideal m = (z). The dimension of
the ring is 1 because of the chain (0) ⊂ (z). Also the vector space (z)/(z)2 is clearly of
dimension 1 because it is generated by one element z.

Example 2.12. The scheme X = SpecZ is nonsingular, because if x ∈ X is a (closed)
point, then x corresponds to a prime ideal P ⊂ Z and hence P = (p) for some prime
number p. The local ring is Z(p) is a discrete valuation ring, it has dimension one (because
(p) is a height one prime) and the maximal ideal (p) is generated by one element, so
(p)/(p2) is a one dimensional vector space over the field Z/(p).

This is an important example in algebraic geometry, because sometimes characteristic
p methods yield useful results in characteristic zero. If X ⊂ PnZ is a variety, we could look
at the fibers over each prime p ∈ Z to get a family of varieties Xp ⊂ PnZ/(p), one for each
prime p.

2.5. Analytic isomorphism. It might seem like one should use isomorphism of local
rings to define isomorphism of singularities. This doesn’t work out well, because the
local rings OX,p remember the birational equivalence class of X through the function
field K(X), which is the same as the fraction field for OX,p. Thus OX,p carries too much
information about X, in particular, it sees an open dense set of points. To get closer,
we use analytic isomorphism. For this, we define the completion of a local ring (A,m) to

be the inverse limit Â = lim
←−

A/mn. Then we define two points p ∈ X and q ∈ Y to be

analytically isomorphic if ÔX,p ∼= ÔY,p as k-algebras. Note that if (A,m) is a local ring,

then so is Â, moreover
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(1) dim Â = dimA.

(2) A is a regular local ring ⇐⇒ Â is a regular local ring.

Example 2.13. Let X = A1 and p = 0 the origin. Then the local ring of X at p is
k[x](x). If A = k[x] and m = (x), then we have the inverse system

A→ A/m→ A/m2 → · · · → A/mn → . . .

and the direct limit is the power series ring k[[x]]. Similarly if p ∈ X = An is a point,

then ÔX,p ∼= k[[x1, . . . , xn]].

The following theorem (Cohen structure theorem) says that the previous example cap-
tures the analytic isomorphism class of any smooth point of a variety over the field k:

Theorem 2.14. Let (A,m) be a complete local ring containing a field with residue field
k = A/m. If A is regular of dimension d, then A ∼= k[[x1, . . . , xd]].

Example 2.15. A few surface singularities X ⊂ A3.

(1) x2 + y2 = z2 gives a conical double point at the origin.
(2) xy = x3 + y3 defines a surface singular long the entire z-axis.
(3) xy2 = z2 defines a pinch point at the origin.
(4) Rational double points (a certain kind of isolated surface singularity) have been

classified: There are three basic types called the ADE classification.
(a) An : xy + zn+1 = 0.
(b) Dn : x2 + y2z + zn−1 = 0.
(c) E6 : x2 + y3 + z4 = 0.
(d) E7 : x2 + y3 + yz3 = 0.
(e) E8 : x2 + y3 + z5 = 0.

3. Hironaka’s theorem

Here we explain the statement of Hironaka’s theorem [3, 4]. To set up the vocabulary,
we need to define blow ups and simple normal crossing singularities.

3.1. Geometric blow up of the origin in An
k . Let O = (0, 0, . . . , 0) ∈ An be the origin.

Take x1, . . . xn as coordinates on An and let y1, . . . , yn be projective coordinates on Pn−1.
We define an algebraic set X ⊂ An × Pn by the equations

xiyj − xjyi = 0, 1 ≤ i, j ≤ n

and compose with the first projection:

X ⊂ An × Pn−1
ϕ↘ ↓

An

Some observations about the map φ : X → An.

(1) The restriction ϕ : X −ϕ−1(O)→ An−O is an isomorphism. If (a1, . . . , an) 6= O,
say a1 6= 0, we can use the equations to write yi = (ai/a1)y1, so that up to
scalar, (y1, . . . yn) = (a1, . . . an), thus there is a unique point in X lying over
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each point p 6= O. Moreover, we can write down the inverse map, it is given by
(a1, . . . an) 7→ (a1, . . . an)× (a1, . . . , an).

(2) ϕ−1(O) = {O} × Pn−1, because when all the xi = 0, the equations place no
restriction on the yi.

(3) X is irreducible. I could write down some calculations, but the reason is roughly
this. Pn−1 is literally the space of lines through the origin (by definition!). Now
if Lv ⊂ An is the line through the origin corresponding to the tangent direction
v ∈ Pn−1, then one can calculate that ϕ−1(L) is the union of ϕ−1(L−O) and
ϕ−1(O) and that these two intersect at the point v. In particular, every point
q ∈ ϕ−1(O) ∼= Pn−1 is in the closure of the irreducible space X − ϕ−1(O), so X is
an irreducible variety and φ : X → An is a birational map, i.e. is an isomorphism
on a dense open set.

Example 3.1. Take n = 2. Here we can visualize the construction over k = R. The lines
through the origin are parametrized by RP1 and one can imagine the picture of a spiral
staircase over R2 with the lines winding up the staircase about the central pole. A picture
of this can be found in just about every algebraic geometry text, for example [2, p. 29]
or [7, p. 100]. Looking at this picture, if Y ⊂ R2 is the nodal curves xy = x4 + y4 we

drew before, then Ỹ = φ−1(Y −O) is a nonsingular curve in which the node at the origin
has been replaced by two distinct points. Similarly the cuspical cubic curve Y given by
y2 = x3 yields a nonsingular curve Ỹ = φ−1(Y −O) which is homeomorphic to Y via the
map φ, but now Ỹ is tangent to the central P1 and the kink at the origin is ironed out.

With this example in mind, we define the blow up of An at O to be X, usually denoted
Ãn(0) to indicate the origin was blown up. For O ∈ Y ⊂ An, the blow up of Y at O is

φ−1(Y −O).

3.2. Algebraic blow up of the origin in An. There is an algebraic way to think about
blow up that leads to a more general and flexible notion. Looking back at Example 3.1,
the equations for the blow up live in the ring R = k[x, y][X, Y ], where I’m now using
x, y instead of x1, x2 and X, Y for y1, y2. The ring R corresponds to the space A2 × P1

in the sense that (closed) points of the space correspond to height 3 prime ideals which
are homogeneous in the variables X, Y : the point (a, b, c, d) ∈ A2×P1 corresponds to the
ideal (x − a, y − b, cY − dX) ⊂ R. The analogous construction of a the space A2 × P1

from the ring R is called the Proj construction, i.e. A2 × P1 = Proj R. This space is a
scheme, defined locally as a space of prime ideals with the Zariski topology. Similarly, if A
is any ring and R = A[X1, . . . Xn]/I is a graded algebra over A defined by homogeneous
ideal I, one can construct the space Proj R which comes with a natural projection to
Proj R→ Spec A.

Looking back at Example 3.1, X = Ãn = Proj k[x, y][X,Y]/(xY − yX), but let’s look
more closely at this ring and it’s graded pieces. Thinking of A = k[x, y] as the scalars
and X, Y linear forms over A, the graded pieces are k[x, y] in degree zero, Xk[x, y] ⊕
Y k[x, y]/(xY − yX) in degree one, X2k[x, y] ⊕ XY k[x, y] ⊕ Y 2k[x, y] in degree two and
so on. The degree one part is isomorphic as k[x, y]-module to the ideal (x, y), which is
generated by x, y subject to the cross relation xy = yx. The degree two part is isomorphic
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as k[x, y]-module to the ideal (x, y)2. In general, putting together these graded pieces we
find that as graded algebras over k[x, y] there is an isomorphism

k[x, y][X, Y ]/(xY − yX) = k[x, y]⊕ (x, y)⊕ (x, y)2 ⊕ · · · = ⊕d≥0(x, y)d

This motivates a general definition of blow up. If X is a variety covered by open affine
sets Ui = Spec Ai and Z ⊂ X is a closed subset given by local ideal Ji ⊂ Ai, then we
construct the blow up X̃ → X locally by Proj ⊕d≥0 Jd

i → Spec Ai. These spaces are
independent of the choice of generators for the ideals Ji and as such glue together to give
the space X̃ → X. The preimage E = φ−1(Z) is callled the exceptional divisor for the
blow up, it always has codimension one in X̃ and is locally defined by a single equation.

Example 3.2. We could blow up the linear subspace Z ⊂ An defined by the ideal
IZ = (x1, . . . xr) so that Z is a smooth subvariety of dimension n − r. The result is

φ : Ãn → An which is an isomorphism away from Z and Z has been replaced by Z×Pr−1
and is defined by those same quadratic equations xiyj−xjyi = 0. The exceptional divisor

is E = Z×Pr−1 ⊂ Ãn, an irreducible subvariety of dimension n− 1. In general, if Z ⊂ X
is an inclusion of nonsingular varieties and Z has codimension r, then the exceptional
divisor of the blow up X̃ → X along Z is a Pr−1-bundle over Z.

The algebraic blow up has the following properties. If we blow up Z ⊂ X, say X ⊂ An,
IZ ⊂ AX = k[x1, . . . , xn]/IX so that the blow up is locally defined by X̃ = Proj ⊕d≥0 IdZ,
we say that Z is the center of the blow up and E = ϕ−1(Z) is the exceptional divisor
giving a diagram

E ⊂ X̃
↓ ϕ ↓
Z ⊂ X

(1) ϕ : X̃ − E → X − Z is an isomorphism.
(2) The exceptional divisor E ⊂ X̃ is of codimension one and locally defined by a

single equation.
(3) In the best case that Z ⊂ X are both nonsingular and Z has codimension r, the

map ϕ : E → Z is a Pr−1-bundle, in particular both E and X̃ are nonsingular.
(4) If Z 6= X, the ϕ : X̃ → X is a birational projective morphism, meaning that ϕ is

an isomorphism on a dense open set (see the first property) such that there is a
closed embedding g : X̃ → X × PN with ϕ = π1 ◦ g.

The last property has a surprising converse:

Theorem 3.3. If f : Y → X is any birational projective morphism, then there is a closed
subscheme Z ⊂ X and an isomorphism g : Ỹ → X̃, where ϕ : X̃ → X is the blow up of
X at Z so that f = ϕ ◦ g.

In other words, every birational projective morphism is a blow up!

Here is Hironaka’s theorem (Ann. of Math. 79 (1964), 109–203, 205–326), it got split
into two parts because of the change in issue.

Theorem 3.4. Assume k is an algebraically closed field of characteristic zero. Let X
be a nonsingular variety which contains the possibly singular variety Y . Then there is a
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sequence of blow ups with smooth centers Zi ⊂ Xi−1

X = X0
σ1← X1

σ2← X2 . . . Xm = X̃

such that the strict with transforms Yi = σ−1i (Yi−1 − Zi−1) we have Ỹ = Ym is nonsingular.

Furthermore, the union of exceptional divisors in Ỹ has at worst simple normal crossing
singularies.

Remarks 3.5. Some quick comments:

(1) Zariski proved resolution of singularities for threefolds over a field of characteristic
zero in 1944 [8]

(2) Abhyankar proved this result if Y is a surface and char k 6= 2, 3, 5 [1].
(3) Nowadays there are proofs of Hironaka’s theorem less than 40 pages long, but

nobody has improved on his result.
(4) There’s a nice expository article in the AMS Bulletin on this topic [?].

Example 3.6. To see Hironaka’s theorem in a simple setting, let X = A3 and Y ⊂ X
be the surface with equation xy − z3 = 0. Then Y is singular only at the origin. If
X1 = X̃ → X is the blow up of X at the origin and the strict transform Y1 = Ỹ → Y
is the strict transform, one can check that E1 ∩ Ỹ ∼= P1 and that Ỹ has exactly one
singular point p in E1 ∩ Ỹ . Moreover, the local equation of the singular point p has the
form xy − z2 = 0. If X2 → X1 is the blow up at p, the strict transform Y2 → Y1 is a
nonsingular surface. The exceptional divisor is E2 ⊂ Y2 and E2

∼= P1. The two exceptional
divisors meet transversely, forming what look like intersecting x and y axes in P2.
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