
THE TWENTY-SEVEN LINES ON THE SMOOTH CUBIC X ⊂ P3
C

SCOTT NOLLET

Abstract. This talk is intended to explain configuration of the 27 lines on the smooth
cubic surface in P3 and their symmetry group, which is isomorphic to the Weyl group
associated to the rational double point surface singularity E6.

1. Line bundles on complex projective space

Definition 1.1. A complex line bundle on a topological space X can be thought of as
a map π : L→ X which locally on X looks like X × C→ X. By looking at the space of
holomorphic (or algebraic) sections to π on open subsets U ⊂ X, one can also understand
L as an invertible sheaf on X. We will use the invertible sheaf understanding here.

Example 1.2. On any holomorphic manifold M one has the trivial bundle OM whose
sections are the holomorphic functions on open sets. From the topological viewpoint is
the projection M × C→M .

Given a line bundle L on X and an open cover of X, the transition functions defining
L define a Čech cocycle γ ∈ H1(X,O∗X), where O∗X ⊂ OX is the group of units, i.e.
nonvanishing holomorphic functions. This association gives an isomorphism between the
group H1(X,O∗X) and the group of isomorphism classes of line bundles on X, the latter
group is called the Picard group of X, denoted PicX. Thus there is an isomorphism

PicX ∼= H1(X,O∗X).

Remark 1.3. If L is a line bundle on X and s ∈ Γ(X,L) is a non-zero holomorphic
global section, then (s)0 = {x ∈ X : sx = 0} is a Cartier divisor on X, i.e. a closed
subscheme defined locally by a single equation, hence it has pure codimension one and
can be written (s)0 = D =

∑
miYi where Yi are the irreducible components and mi

are the corresponding multiplicities. Conversely if D is a sum of irreducible codimension
one subvarieties with multiplicities (an effective Weil divisor), its ideal sheaf ID ⊂ OX

is locally defined by a single equation, so ID is a line bundle: dualizing the inclusion
ID ⊂ OX gives OX → I−1D = L, i.e. a global section s ∈ Γ(X,L) and one locally checks
that (s)0 = D. This association gives an isomorphism PicX ∼= ClX, where ClX is the
group of Weil divisors modulo prinicipal divisors.

Projective space X = Pn
C supports many line bundles. The complex exponential func-

tion gives rise to an exact sequence

0→ Z→ OX → O∗X → 0
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where Z refers to the constant sheaf. Taking cohomology gives a long exact sequence of
which the fragment

· · · → H1(OX)→ H1(O∗X)→ H2(X,Z)→ H2(OX)→ . . .

exhibits an isomorphism PicX ∼= H1(O∗X) ∼= H2(X,Z), the latter isomorphism due to
the vanishings H1(OX) = H2(OX) = 0. Since H2(Pn

C,Z) ∼= Z, there is one line bundle
(up to isomorphism) for each integer giving an isomorphism

PicPn
C
∼= Z

where the group operation on the left is tensor product.

Example 1.4. The group PicPn
C has two generators corresponding to ±1 ∈ Z. One of

them is the tautological line bundle used by differential geometers. As a map L→ Pn
C,

the fibers can be identified with the actual complex lines in Cn+1 through the origin, hence
the term “line bundle”. As an invertible sheaf, it can be thought of as the ideal sheaf
IH ⊂ OPn of holomorphic functions which vanish on a fixed hyperplane H ⊂ Pn.

Definition 1.5. On projective space X = Pn, the line bundle O(1) is the inverse to the
tautological line bundle from Example 1.4. It can also be constructed algebraically by
sheafifying the graded module S(1), where S = C[x0, x1, . . . , xn] is the polynomial ring.

Remarks 1.6. The line bundle O(1) plays an important role in algebraic geometry (see
next section). Note the following:

(a) Because O(1) generates PicX ∼= Z, we can obtain any line bundle from O(1) by
taking tensor powers and duals. Thus for n > 0 we use the notation O(m) = O(1)⊗m

and for m < 0, O(m) is the dual to O(−m). In particular, the tautological line bundle of
Example 1.4 is written O(−1).

(b) The global holomorphic sections Γ(Pn,O(1)) can be identified with the (n + 1)-
dimensional vector space of linear forms in the homogeneous coordinates on Pn, i.e.
with the vector space 〈x0, x1, . . . , xn〉. In general Γ(Pn,O(m)) appears as the space of
homogeneous n-forms in the variables xi, so that Γ(PnO) = C are the constants and
Γ(PnO(m)) = 0 for m < 0.

2. Maps to projective space

The importance of O(1) on Pn springs from the following.

Construction 2.1. Let f : X → Pn be a holomorphic (algebraic) map. The pull-back
L = f ∗OPn(1) is then a line bundle on X and f ∗(x0), . . . f

∗(xn) ∈ Γ(X,L) generate an
(n+ 1)-dimensional subspace V ⊂ Γ(X,L).

This motivates the following definition.

Definition 2.2. A linear system on an algebraic variety X consists of a line bundle
L on X and a vector subspace V ⊂ Γ(X,L). The dimension of the linear system is
dimV − 1.

Remark 2.3. Geometrically we think of the elements of the linear system not as the
sections s ∈ V , but as the effective divisor (s)0 ⊂ X where s vanishes. For example when
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X = Pn and L = OPn(1) and s = x0 ∈ Γ(X,L), we would visualize s as the hyperplane
H = {x0 = 0}. This explains why the dimension is dimV − 1, because if two sections
agree up to scalar, then they give rise to the same zero section.

Not every linear system comes from an embedding j : X ↪→ Pn or even from a map to
projective space, but these conditions have well-known characterizations.

Definition 2.4. Let V ⊂ Γ(X,L) be a linear system on X.

(1) V is base point free if for each x ∈ X, there is some s ∈ V such that sx 6= 0 in
the stalk Lx.

(2) V separates points if for each pair of points x, y ∈ X, there is some s ∈ V with
sx = 0 and sy 6= 0.

(3) V separates tangent vectors if for each point x ∈ X, the stalks sx of the
elements s ∈ V span the vector space Lx ⊗Ox,X/mx.

With these definitions, we have the following result, whose content is that maps to
projective space (and in particular projective embeddings) are intrinsically linked with
linear systems via Construction 2.1:

Theorem 2.5. Let V ⊂ Γ(X,L) be a linear system on an algebraic variety1 X. Then

(a) There’s a morphism f : X → Pn with f ∗(OPn(1)) = L and V = 〈f ∗(x0), . . . f ∗(xn)〉
if and only if V is base point free.

(b) There is a closed immersion f : X ↪→ Pn as above if and only if V separates points
and tangent vectors.

Remark 2.6. Part (b) was an element of Kodaira’s embedding theorem. He proved that
if L is positive in the sense of Kodaira2, then some tensor power L⊗m with m > 0 has
global holomorphic sections in Γ(X,L) satisfying condition (b), from which he proved
that there is a holomorphic embedding of X into a projective space [6]. Nowadays we
say that L is ample if some tensor power L⊗m comes from an embedding into projective
space, and that L is very ample if we may take m = 1.

Example 2.7. We give a few examples.

(a) Taking X = Pn, L = O(1) and V = Γ(X,L) the corresponding map is simply an
isomorphism Pn ∼= Pn. Thus the automorphisms of Pn come from linear automor-
phisms of the vector space V = Γ(X,L) modulo scalar, i.e. Aut(Pn) ∼= PGL(n).

(b) Take X = P1, L = O(d) and V = Γ(X,L). Then V is a vector space of dimension
d + 1 and we obtain a closed immersion P1 ↪→ Pd whose image is the rational
normal curve of degree d. When d = 2 we obtain the plane conic and when d = 3
we obtain the twisted cubic curve.

(c) Taking X = P2, L = O(2) and V = Γ(X,L) to be the 6-dimensional vector space
generated quadratic forms in x0, x1, x2 gives a closed immersion X ↪→ P5. The
image is the Veronese surface.

1This theorem holds for any scheme of finite type over C.
2This was described in my GAGA talk last semester.
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(d) Continuing the previous example, the vector space V ⊂ Γ(P2,O(2)) generated
by the quadrics x20, x

2
1, x

2
2, x1(x0 − x2), x2(x0 − x1) also can be shown to separate

points and tangent vectors, giving an embedding P2 ↪→ P4, also called the Veronese
surface. It is obtained from the Veronese in P5 by projecting from a point.

(e) The space of all cubics in O(3) on P2 gives an embedding P2 ↪→ P9.

3. Lines on the smooth cubic in P3

Understanding the lines on cubic surfaces was trendy mathematics in the mid to late
1800s. The result that the smooth cubic contains 27 lines was proved through letters
mailed between George Salmon and Arthur Cayley in 1849 [1]: basically Cayley proved
that the number of lines must be bounded and Salmon proved that the expected number
of such lines is 27. Two whole books have been devoted to the subject [4, 10]. Here’s a
quote from Yu Manin [7, p.112]:

“Their elegant symmetry both enthrals and at the same time irritates: what use is it to
know, for instance, the number of coplanar triples of such lines (forty five) or the number
of Schläfli double sixes (thirty six)? The answer to this rhetorical question is one of the
two recurring themes in this chapter. In just a few words: the classes of lines on X ⊗ k
generate the group N(X) = Pic(X ⊗ k) and the action of the Galois group G = Gal(k/k)
on N(X) preserves symmetry and it implicitly contains an extremely large amount of
information on the arithmetic and geometry of X”

3.1. Construction of the smooth cubic X. We continue with example 2.7 (e). For
P2, instead of taking V ⊂ Γ(P2,O(3)) to the space of all cubic forms, we take the cubic
forms which vanish at six points p1, p2, . . . p6 chosen generally enough that

(a) No three of the pi are collinear.
(b) The pi are contained in no conic.

The vector space V has dimension 4, but clearly is not base point free, since by construc-
tion the points p1, . . . p6 are base points for the linear system. Ignoring the base points,
we would obtain an embedding

P2 − {p1, p2, p3, p4, p5, p6} ↪→ P3.

The closure of the image is a smooth cubic in P3, but we can understand what this closure
looks like. There is a general theorem in algebraic geometry that says that if V ⊂ Γ(X,L)
is a linear system with base locus B, then V gives a map X −B → Pn as above and that
if X̃ → X is the blow-up of the base locus, then the rational map X → Pn extends to X̃.
In the situation above, the base locus is B = {p1, p2, p3, p4, p5, p6} and we can complete
the map to

P̃2

π ↙ ↘ ϕ
P2 ⊃ P2 −B ↪→ P3

The map ϕ is a closed immersion whose image X is the closure we seek, a smooth cubic
surface in P3.
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Theorem 3.1. Every smooth cubic surface S ⊂ P3 arises by the construction above.

Proof. If S ⊂ P3 is a smooth surface, the adjunction formula gives KS = (KP3 + L)|S,
where KX denotes the canonical sheaf on X (analytically speaking, this is the sheaf of
differential d-forms, if d = dimX) and L ∈ PicP3 is the line bundle corresponding to S
(see Remark 1.3). Now KP3

∼= O(−4) and L = O(3), so we find that KS = OS(−1),
meaning that S is a Del Pezzo surface. These have been classified [7, §24] and in this case
S is obtained from P2 by blowing up six points in general position as above. �

3.2. Divisors on the smooth cubic X. We showed above that PicP2 ∼= Z generated
by O(1). If we use the isomorphism PicP2 ∼= ClP2, we would write this generator as
a line l ⊂ P2, thought of as an effective Cartier divisor. The blow up π : X̃ → X
construction replaces the six points pi with exceptional divisors Ei which are isomorphic
to P1, essentially each tangent direction to pi on P2 has been replaced by an actual
corresponding point in Ei. From the theory of blow ups, one knows that ClP2 ∼= Z7

generated by L = π∗(l) and the Ei.

Intersection theory works on any smooth variety, so on X there is a bilinear pairing

ClX × ClX → Z

obtained by extending the rule D.E = #{D ∩ E} when D and E meet transversely. For
blow-ups the intersection theory is well-known: the intersection pairing on X is given by

L2 = 1, L.Ei = 0, Ei.Ej = −δi,j
Intersection theory can be used to compute many integer invariants of divisors. If C ⊂ X
is an effective divisor (i.e. a curve), given by the class C ∼ aL −

∑
biEi, then the basic

invariants of C are given by

(1)
degC = 3a−

∑
bi

C2 = a2 −
∑
b2i

pa(C) = 1
2
(C2 − degC) + 1

3.3. The lines on X. Using the formulas (1) above, we are in position to hunt for the
straight lines on X, which are precisely the curves of degree 1 and genus 0.

Example 3.2. We apply the formulas above to some curves on X to compute their
invariants.

(a) The exceptional divisors Ei ⊂ X are effective. As a divisor written aL−
∑
biEi,

this is the case where a = 0, bj = −δi,j. The formulas give degEi = 1, E2
i = −1

and pa(Ei) = 0, so the exceptional divisors Ei give SIX straight lines on X.
(b) The class of the line l ⊂ P2 is represented by L ∈ ClX. We have degL = 3, L2 =

1, pa(L) = 0, so these are rational cubic curves on X, not lines.
(c) Let C ⊂ X correspond to a line l ⊂ P2 passing through p1. Then π−1(l) = L+E1,

so the strict transform would be written C ∼ L − Ei, reflecting the fact that l
passes through p1. We have degC = 2, C2 = 0, pa(C) = 0, so C appears as a
conic.
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(d) Let C correspond to a line passing through p1 and p2. Arguing as above, C ∼
L − E1 − E2 and we find that degC = 1, C2 = −1, pa(C) = 0, so we have
uncovered another line. Choosing different pairs of points pi, pj, we have discovered
FIFTEEN lines Fi,j ∼ L− Ei − Ej.

(e) Similar to (b) above, a general conic in P2 appears on X as a rational curve of
degree 4, but looking at conics passing through some of the pi is more interesting.

(f) Cutting to the chase, there is a unique conic q ⊂ P2 passing through any 5 points,
say p1, . . . p5. The corresponding curve on X is C ∼ 2L−E1−E2−E3−E4−E5

and we find that degC = 1, C2 = −1, pa(C) = 0. This produces SIX more lines
Gj ∼ 2L−

∑
i 6=j Ei.

Theorem 3.3. ([3, V,Theorem 4.9]) The 27 lines on X ⊂ P3 are those listed above.

3.4. Intersections of the lines. The intersection theory on X tells us exactly which
lines intersect. The answer is this:

(1) The Ei are skew lines, as are the Gj. Fi,j ∩ Fk,l 6= ∅ ⇐⇒ i 6= k, l and j 6= k, l.
(2) Ei ∩Gj 6= ∅ ⇐⇒ i 6= j.
(3) Fi,j ∩ Ek 6= ∅ ⇐⇒ k = i, j.
(4) Fi,j ∩Gk 6= ∅ ⇐⇒ k = i, j.

Remark 3.4. It is a bit difficult to draw (visualize) this configuration of lines and their
intersections. If you want to see them, you should get a ticket to the 1894 World Expo
in Chicago, where Felix Klein displayed plaster models of such cubics over R exhibiting
the intersections above.

Remark 3.5. Any twelve lines like Ei, Gj such that the Ei and Gk are skew families and
#{Ei ∩Gj} = 1− δi,j are called a Schläfli’s double six. Hilbert and Cohn-Vossen proved
that any Schläfli double six in P3 are contained in a unique nonsingular cubic surface [5].
This is an analog of the much easier fact that any skew three lines are contained in a
unique nonsingular quadric surface.

3.5. Symmetries of the 27 lines. Using the intersection computations above, you will
find that each of the 27 lines has self-intersection −1 and meets exactly 10 of the other
lines, so you might expect some degree of symmetry among them. Indeed, the symmetry
group acting on the configuration is rather large, as we will show in a moment. The key
to realizing the symmetries is geometric in nature:

Theorem 3.6. Let L1, . . . L6 be any skew six lines on X. Then there is a blow up of P2

as contructed above for which the six exceptional divisors Ei become the Li.

Remark 3.7. This means that any six mutually skew lines on X look like any other six
mutually skew lines. Note that the choice of Ei determines the roles of the other 21 lines,
because Fi,j is the unique line which meets both Ei and Ej and Gk is the unique line
which misses Ek and intersects the remaining Ei.

Proposition 3.8. The automorphism group G of the configuration of the 27 lines has
order 51, 840.
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Proof. Given the theorem above, it suffices to count the number of ordered 6-tuples of
mutually skew lines, a relatively easy count:

• There are 27 choices for E1.

• For E1 fixed, there are 16 choices for E2, namely E2, . . . E6, G1, Fi,j with i, j > 1.

• For E1, E2 fixed, there are 10 choices for E3, namely E3, . . . E6, Fi,j with i, j > 2.

• For E1, E2, E3 fixed, there are 6 choices for E4, namely E4, E5, E6, F4,5, F4,6, F5,6.

For E1, E2, E3, E4 fixed there remain only the lines E5, E6, F5,6 left, but E5 and E6 both
meet F5,6, so F5,6 is not available, giving only two choices between E5 and E6, when the
last line must be the one not chosen. Therefore |G| = 27 · 16 · 10 · 6 · 2 = 51, 840. �

Example 3.9. We use linear systems to describe a symmetry of the 27 lines.
(a) Three non-collinear points p1, p2, p3 ∈ P2 define the linear system V ⊂ Γ(P2,O(2))
of conics which contain the pi. The linear system V has base locus B = {p1, p2, p3} and
dimV = 3, for example if p1 = (1, 0, 0), p2 = (0, 1, 0), p3 = (0, 0, 1), then an explicit basis
for V consists of the degenerate conics x0x1, x0x2, x1x2. This linear system gives a map

P2 − {p1, p2, p3} ↪→ P2 which extends to the blow-up X = P̃2 at B as in the construction
of the smooth cubic earlier:

P̃2

π ↙ ↘ ϕ
P2 ⊃ P2 −B ↪→ P2

The birational map from P2 to itself is called a quadratic transformation. The map ϕ can
be realized as the blow-up of P2 at points {q1, q2, q3}, the exceptional divisors being the
strict transforms of the lines li,j passing through pi and pj [3, V, Example 4.2.3]. Thus
the exceptional divisors of π become the three lines determined by the qi under ϕ while
the exceptional divisors of ϕ become the three lines li,j under the projection π.
(b) Associated to the quadratic transformation above one obtains an automorphism of
the configuration of the 27 lines by visualizing the blow-up at the points p1, . . . , p6 versus
the points q1, q2, q3, p4, p5, p6. Since the lines through the first 3 points become exceptional
divisors for the qi and similarly when the roles of pi and qi are reversed for i ≤ 3, we obtain
an automorphism ψ of the 27 lines given by ψ(E1) = F2,3, ψ(E2) = F1,3, ψ(E3) = F1,2,
ψ(Ej) = Ej for j = 4, 5, 6 and ψ(F1,2 = E3, ψ(F1,3) = E2, ψ(F2,3) = E1. It’s easy to check
that ψ fixes Fi,j for i < 3.5 < j and fixes G1, G2, G3 as well. The rest of the automorphism
is more interesting, for consider ψ(G4). The line G4 corresponds to a conic in P2 which
passes through all the pi except p1. Because the quadratic transformation is defined
by a family of conics, G4 must map to a straight line via ϕ. The blow-up π separates
G4 from the lines F1,2, F1,3, F2,3 because of the different tangent directions, hence ϕ(G4)
misses q1, q2, q3. Since G4 misses p4 by definition, it maps to the line F5,6 passing through
p5, p6. Similarly ψ(G5) = F4,6, ψ(G6) = F4,5. Reasoning from the other side we see that
ψ(F4,5) = G6, ψ(F4,6) = G5, ψ(F5,6) = G4. Notice that ψ is an automorphism of order
two, which corresponds to the fact that the quadratic transformation has order two as a
birational map.
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3.6. Relation to the Weyl group for E6 surface singularity. There are various
ways to describe the Weyl group E6. An intrinsic definition is that E6 is the automor-
phism group of the unique simple group of order 25920, which can be described as any of
PSU4(2),PSp4(3) or PSΩ5(3). There are various descriptions in terms of generators and
relations (wikipedia gives at least two of them).

There are also such groups for any surface singularity An,Bn, . . . , so I’ll use the general
description coming from the Dynkin diagram for the singularity, which is a graph
representing of the configuration of exceptional divisors in a resolution of the surface
singularity. Given a graph, we can define a group by generators and relations as follows:
the generators xi are given by the vertices of the graph, and the relations are x2i = 1 for
each i; (xixj)

2 = 1 if xi, xj are not adjacent, and (xixj)
3 = 1 if xi is adjacent to xj.

The Dynkin diagram for E6 consists of 6 points x1, x2, x3, x4, x5 and y. The xi form a
linear chain (i.e. xi is adjacent to xi+1) and y is only adjacent to x3. According to [3, IV,
Ex. 4.11], we can define an isomorphism from E6 → G (G is the automorphism group of
the 27 lines) as follows: xi 7→ (EiEi+1) (the automorphism induced by permuting Ei, Ej,
which will also exchange Gi, Gi+1 and the lines Fi,k, Fi+1,k) for each 1 ≤ i ≤ 5.

The image of y is the automorphism explained in Example 3.9 above. It is quite easy
to check by the action on the Ei that the images of the xi and y have order two, that
the image of xiy has order two if i 6= 3 and that x3y has order three, so that the map
E6 → G is well-defined. It takes some calculation to confirm that it is bijective (apparently
injectivity is the hard part, as it is a starred exercise [3, V, Ex. 4.11]).
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