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Abstract. This is intended as an appendix to Ken Richardson’s recent talks on the
Field’s medal work of Maryam Mirzhakani [14]. I hope to explain how Wolpert’s descrip-
tion of the Weil-Petersson symplectic form and it’s extension to a positive line bundle
on Mg,n [17] embeds it into a projective space via the Kodaira embedding theorem (fol-
lowing Lazarsfeld’s book on positivity in algebraic geometry [13]). I will also explain
the standard algebro-geometric method for compactifying Mumford’s moduli space Mg

parametrizing isomorphism classes of complex projective smooth connected curves of
genus g [15, 7].

1. Motivation

The following theorem was mentioned in Ken’s talk:

Theorem 1.1. (Wolpert [17]): The Weil-Petursson symplectic form extends to a posi-
tive line bundle on Mg,n, therefore Mg,n is a complex projective variety.

My goals here are to (a) explain various notions of positivity for line bundles, (b) explain
Kodaira’s embedding theorem, which gives the “therefore” part of the theorem and (c)
explain how algebraic geometers compactify the Mumford moduli space.

2. Kähler forms

Let X be a complex manifold. For x ∈ X, let TxX denote the real tangent space
at x with endomorphism J : TxX → TxX determining the complex structure, so that
J2 = −Id. If ω is a C∞ 2-form on X, we write ω(v, w) ∈ R for the evaluation at real
tangent vectors v, w ∈ TxX.

Definition 2.1. Let ω be a 2-form on a complex manifold X. We say that ω is

• type (1, 1) if ω(Jv, Jw) = ω(v, w) at each x ∈ X and for each pair v, w of real
tangent vectors.
• positive if it has type (1, 1) and ω(v, Jv) > 0 for each x ∈ X and nonzero v.

A Kähler form is positive (1, 1) form ω which is closed, meaning that dω = 0.

Remark 2.2. A 2-form ω is a positive (1, 1) form if and only if it can be written

ω =
i

2

∑
hαβdzα ∧ dzβ

in local holomorphic coordinates z1, . . . zn with hαβ a positive definite Hermitian matrix
of complex valued functions at each point.
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Example 2.3. The classic example of a Kähler form is the Fubini-Study form on Pn.
Following the description given by Arnol’d [2], let 〈v, w〉 = vt·w be the standard Hermitian
inner product on Cn+1 and consider the canonical projection π : Cn+1 − {0} → Pn. First
scale the inner product as

Hx(v, w) = 〈 v
|x|
,
w

|x|
〉 for v, w ∈ Tx = Cn+1

to make it invariant under the C∗ action so that H descends to the Fubini-Study (Her-
mitian) metric HFS on Pn, which is invariant under the U(n+ 1) action on Pn.

The Fubini-Study form is ωFS = −ImHFS. On the standard open set U0 ⊂ Pn defined
by x0 = 1, one can calculate in local coordinates that

ωFS =
i

2
·
(∑

dzα ∧ dzα
1 +

∑
|zα|2

− (
∑
zαdzα) ∧ (

∑
zαdzα)

(1 +
∑
|zα|2)2

)
.

which is a positive (1, 1) form by Remark 2.2 or note that the negative imaginary part of
a Hermitian matrix is positive definite. Mumford observed that the U(n + 1) invariance
gives a quick proof that ωFS is closed [16, Lemma 5.20]: for p ∈ Pn, choose γ ∈ U(n+ 1)
with γ(p) = p and dγp = −Id (take the (n + 1) × (n + 1) matrix which 1 along the axis
corresponding to x and −Id on the orthogonal complement). Then for u, v, w ∈ TpPn we
have

dωFS(u, v, w) = γ∗(dωFS)(u, v, w) = dωFS(−u,−v,−w)

so that dωFS = 0.

3. Metrically positive line bundles and Kodaira’s theorem

3.1. Curvature form associated to a line bundle. Fix a Hermitian metric h on a
holomorphic line bundle L over the complex manifold X. The Hermitian line bundle
(L, h) gives rise to the curvature form

Θ(L, h) ∈ C∞(X,Λ1,1T ∗X).

It is a closed (1, 1) form defined as follows: The exponential sequence

0→ Z→ OX → O∗X → 0

on X gives rise to the cohomology sequence fragment

PicX ∼= H1(X,O∗X)
c1→ H2(X,Z)

The Picard group classifies line bundles over X, which are also determined by cocycles
which gives the isomorphism on the left: thinking of a line bundle L ∈ PicX, the image
under the boundary map on cohomology is the first Chern class c1(L) ∈ H2(X,Z). On
the other hand, Hodge theory gives

H2(X,Z) ⊂ H2(X,C) ∼= H2,0(X)⊕H1,1(X)⊕H0,2(X)

and via this isomorphism the image c1(L) of a complex analytic line bundle L lands in
H1,1(X) and is thus associated to a global 2-form of type (1, 1) - this is a theorem of
Lefschetz and Hodge, also of Kodaira and Spencer [12]. In the non-Kähler case it was
proven by Dolbeault [4, 5].
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This approach shows that the curvature form is independent of the choice of metric,
but using the metric h there is also a local description: writing | |h for the length function
on the fibers of L, if s is a holomorphic section of L which is non-vanishing on the open
set U , then as a 2-form Θ(L, h) is defined locally by Θ = −∂∂log|s|2h independent of s.

Θ(L, h) = ∂∂ log < s, s >h

is independent of the local nonvanishing section s of the line bundle L with hermitian
metric h. Any other such section would be of the form fs, where f is a holomorphic
function that also does not vanish. Plugging into the formula,

∂∂ log < fs, fs >h= ∂∂ log(ff < s, s >h) = ∂∂(log f + log f + log < s, s >h)

which simplifies to ∂∂ log < s, s >h because ∂ annihilates the antiholomorphic function
log f and ∂ annihilates the holomorphic function log f .

3.2. Metrically positive line bundles. A holomorphic line bundle L on a complex
manifold X is positive (in the sense of Kodaira) if it carries a Hermitian metric h for
which i

2π
Θ(L, h) is a Kähler form.

Example 3.1. The classic example is the hyperplane bundle O(1) on X = Pn. The
standard Hermitian inner product on Cn+1 gives a Hermitian metric on the trivial bundle
C × Pn which corresponds in sheaf language to O = OPn , the sheaf of holomorphic
functions. Multiplying by a linear form represents O(−1) as a subbundle of O, so it
inherits the corresponding metric. Finally O(1) is the dual bundle to O(−1) and as
such inherits a canonical metric. Using local coordinates, Griffiths and Harris explicitly
compute that

i

2π
Θ(O(1), h) =

1

π
ωFS

so that O(1) is positive in the sense of Kodaira.

Example 3.2. If X is any complex manifold for which there is a holomorphic embedding

(1) ϕ : X ↪→ Pn

Then X is a compact Kähler manifold (meaning it carries a Kähler form) and the pull-
back M = ϕ∗(O(1)) is a holomorphic line bundle which is positive in the sense of Kodaira,
as can be seen by pulling back the Fubini-Study metric.

Remark 3.3. If L is a positive line bundle, then so is any tensor power M = L⊗m.
Conversely, if M = L⊗m for some positive line bundle M and m > 0, then L itself is
positive. In other words, positive line bundles in PicX are closed under taking mth
powers and “mth roots”. The reason is that if L,M are line bundles, then c1(L⊗M) =
c1(L) + c1(M) as cohomology classes (or as 2-forms).

3.3. Kodaira’s embedding theorem. The surprise here is that all positive line bundles
occur as in Example 3.2:

Theorem 3.4. (Kodaira, 1954 [10]) Let X be a compact Kähler manifold and let L be
a positive holomorphic line bundle on X. Then for some m > 0 there is a holomorphic
embedding ϕ : X ↪→ PN for which ϕ∗O(1) = L⊗m.
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Remark 3.5. Chow’s theorem [3] says that a complex analytic submanifold of Pn is
in fact algebraic, the zero locus of polynomial equations. Applying this we find in the
theorem above that X has the structure of a complex projective algebraic variety.

Remark 3.6. Furthermore, in the context of Kodaira’s theorem one can use typical
topological methods as in the Whitney embedding theorem to embed into a smaller di-
mensional space: suppose ϕ : X ↪→ Pn and p ∈ Pn is a point lying on no secant line
through of X nor lying on any tangent line to X. Then projection from p gives an
embedding into to Pn−1:

ϕ : X
ϕ
↪→ Pn − {p}
↘ ↓ πp

Pn−1

Since the secant variety is the closure of all secant lines to X in Pn, it has dimension at
most ≤ 2 dimX + 1 (the one-dimensional lines are parametrized by pairs of points on X)
and the union of tangent planes has dimension at most 2 dimX, we can continue to project
from points in this fashion until we obtain an embedding into Pm with m = 2 dimX + 1.

Remark 3.7. Given a line bundle M on X as above, how does M actually give rise to the
embedding ϕ? I.e. the embedding given in the theorem is stated abstractly, but one would
like to understand how this works. The vector space H0(X,M) of global holomorphic
sections of M is finite dimensional, so choose a basis s0, . . . sn. Taking homogeneous
coordinates xi for Pn, we produce a map ϕ : X → Pn for which ϕ∗xi = si as follows: Each
si vanishes on a closed subset, let Ui = {xi 6= 0} be the open complement. Similarly xi
vanishes on a closed subset in Pn with open complement Ui ∼= An whose coordinates are
yj = xj/xi with yi omitted. Since si 6= 0 on Xi, it gives an isomorphism

si : OX
∼→ L

which allows us to write sj/si as a holomorphic function in OX(Xi), which we can evaluate
at p to obtain the map

p 7→ (s0/si(p), . . . si−1/si(p), si+1/si(p), . . . sn/si(p))

Gluing together these maps over the open cover gives a global map on X. Perhaps it is
easier to exploit the equivalence relation on Pn and write

p 7→ (s0(p), . . . sn(p)) ∈ Pn.
but this description should go in quotation marks as the evaluation is not so clear here.

An important ingredient in Kodaira’s embedding theorem is the famous Kodaira van-
ishing theorem:

Theorem 3.8. (Kodaira, 1953 [11], Akizuki and Nakano, 1954 [1]) Let X be
a complex Kähler manifold and L a positive holomorphic line bundle on X. Then the
cohomology groups Hp(X,Ωp

X ⊗ L−1) vanish for p+ q < n.

Example 3.9. Let X be a compact Riemann surface, i.e. a complex algebraic curve
carrying a line bundle L. If H0(X,L) 6= 0, then any section s ∈ H0(X,L) vanishes at a
finite number of points, which is constant if counted with multiplicity: this number is the
degree of L. If H0(X,L) = 0, one can use the Riemann-Roch theorem and twist L until
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it obtains nonzero global sections, and use this number to write a well-defined degree of
L, written degL. The Riemann-Roch theorem can be used to show that L = ϕ∗O(1) for
some holomorphic embedding ϕ : X ↪→ Pn if degL > 2g + 1, where g is the genus of X.
Thus L is positive in the sense of Kodaira if and only if degL > 0.
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