
SCISSORS CONGRUENCE

EFTON PARK

1. Scissors Congruence in the Plane

Definition 1.1. A polygonal decomposition of a polygon P in the plane is a finite
set {P1, P2, . . . , Pk} of polygons whose union is P and that pairwise only intersect on
their boundaries. We will often write this using the notation P = P1 +P2 + · · ·+Pk.

Definition 1.2. Polygons P and Q are scissors congruent if there exist polygonal
decompositions {P1, P2, . . . , Pk} and {Q1, Q2, . . . , Qk} of P and Q respectively with
the property that Pi is congruent to Qi for 1 ≤ i ≤ k.

Proposition 1.3. Scissors congruence is an equivalence relation on the set of
polygons.

Proposition 1.4. If two polygons are scissors congruent, then they have equal
area.

Lemma 1.5. Every polygon has a polygonal decomposition consisting of triangles.

Proof. Let P be a polygon and choose a slope m that is different from each of the
slopes of the sides of P . Lines of slope m through the vertices of P give a polygonal
decomposition consisting of triangles and trapezoids:
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For each trapezoid, make a diagonal cut to decompose it into two triangles.
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2 EFTON PARK

Lemma 1.6. Every triangle is scissors congruent to a rectangle.

Proof. Given a triangle, construct the altitude at the vertex with the largest angle.
Cut the triangle with a line that is perpendicular to the altitude and bisects it.
This cuts the triangle into three pieces which can be reassembled into a rectangle.
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Proposition 1.7. Any two rectangles with equal area are scissors congruent.

Proof. A rectangle with base b and height h is clearly scissors congruent to a rec-
tangle with base 2b and height 1

2h. Therefore, given rectangles Ri with base bi
and height hi, i = 1, 2, we may apply the “double the base and halve the height”
operation to one or both of R1 and R2 to arrange that either (a) b1 = b2, in which
case R1 and R2 are congruent, or (b) we have the inequalities b1 < b2 < 2b1. For
the latter case, consider this picture:
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The rectangles AEFG and ABCD are R1 and R2 respectively. By elementary
Euclidean geometry, we deduce that triangles GDK and JEB are each congruent
to FHC and thus congruent to one another. Also, we see that the triangles GJF
and KBC are congruent. Therefore

ABCD = AEJKD + JEB +KBC

is scissors congruent to

AEFG = AEJKD +GDK +GJF.

�

Corollary 1.8. If two polygons have equal area, then they are scissors congruent.
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2. Scissors Congruence in 3-Space

Definition 2.1. A polyhedral decomposition of a polyhedron P in 3-space is a
finite set {P1, P2, . . . , Pk} of polyhedra whose union is P and that pairwise only
intersect on their faces and/or edges. In this case we write P = P1 +P2 + · · ·+Pk.

Definition 2.2. Polyhedra P and Q are scissors congruent if there exist polyhedral
decompositions {P1, P2, . . . , Pk} and {Q1, Q2, . . . , Qk} of P and Q respectively with
the property that Pi is congruent to Qi for 1 ≤ i ≤ k.

Proposition 2.3. Scissors congruence is an equivalence relation on the set of
polyhedra.

Proposition 2.4. If two polyhedra are scissors congruent, then they have equal
volume.

Question 2.5 (Hilbert’s Third Problem). Is the converse of Proposition 2.4 true?

Definition 2.6. Let A be a set of real numbers. A function f : A −→ R is
integrally additive if whenever a finite sum

n1α1 + n2α2 + · · ·+ nmαm = 0

for some integers n1, n2, . . . , nm and some elements α1, α2, . . . , αm of A, it is also
true that

n1f(α1) + n2f(α2) + · · ·+ nmf(αm) = 0.

Definition 2.7. Suppose that P is a polyhedron, let A = {α1, α2, . . . , αm} be the
set of dihedral angles of P , and for each 1 ≤ i ≤ m, let `i be the length (not
necessarily an integer!) of the edge of P that forms the vertex of the angle αi.
Given an integrally additive function f on A, the quantity

f(P ) := `1f(α1) + `2f(α2) + · · ·+ `mf(αm)

is called the Dehn invariant of P associated to f .

Lemma 2.8. Suppose we have a polyhedral decomposition of a polyhedron P :

P = P1 + P2 + · · ·+ Pk.

Let A be the set containing π and the dihedral angles of P, P1, P2, . . . , Pk, and let f
be an integrally additive function on A with the property that f(π) = 0. Then

(?) f(P ) = f(P1) + f(P2) + · · ·+ f(Pk).

Proof. Our polyhedral decomposition of P divides each edge of P , P1, P2, . . . , Pk
into a union of line segments; we will call these line segments edgitos. Suppose
an edgito has length ` and corresponding dihedral angle α. The quantity `f(α) is
called the weight of the edgito. A moment’s thought yields that f(P ) is the sum of
the weights of all the edgitos of P .

Fix an edgito e with length `, let Pi1 , Pi2 , . . . , Pij be the polyhedra in our de-
composition that have e as part of one of their edges, and for 1 ≤ s ≤ j, let γs be
the dihedral angle in Pis associated to e.

Next, we study the quantity

`f(γ1) + `f(γ2) + · · ·+ `f(γj),

which is a “subsum” of f(P ). We consider three cases.
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Case 1: The edgito e lines entirely (except possibly for one or both endpoints)
in the interior of P . Then

γ1 + γ2 + · · ·+ γj − 2π = 0,

whence

0 = f(γ1) + f(γ2) + · · ·+ f(γj)− 2f(π)

= f(γ1) + f(γ2) + · · ·+ f(γj)

= `f(γ1) + `f(γ2) + · · ·+ `f(γj).

Case 2: The edgito e lies on a face of P , but not on an edge. Then

γ1 + γ2 + · · ·+ γj − π = 0,

whence

0 = f(γ1) + f(γ2) + · · ·+ f(γj)− f(π)

= f(γ1) + f(γ2) + · · ·+ f(γj)

= `f(γ1) + `f(γ2) + · · ·+ `f(γj).

Case 3: The edgito e lies on an edge of P . If α is the dihedral angle of P
associated to this edge, then the quantity γ1 + γ2 + · · ·+ γj must equal either α or
α− π. In either event, the requirement that f(π) = 0 implies that

f(γ1) + f(γ2) + · · ·+ f(γj) = f(α),

and hence
`f(γ1) + `f(γ2) + · · ·+ `f(γj) = `f(α),

which is the weight of the edgito e in P . Therefore, if we sum over all edgitos in
our polyhedral decomposition of P , we obtain the right hand side of (?). �

Lemma 2.9. Let f be an integrally additive function on a set A and let α̃ be a
real number not in A. Then f can be extended to an integrally additive function on
A ∪ {α̃}.

Proof. For notational convenience, we use the notation∑
α∈A

′
nαα

to denote a sum of integer multiples of elements of A with all but finitely many of
the integers nα equal to zero. We consider two cases:

Case 1: There exists no equation∑
α∈A

′
nαα+ neαα̃ = 0

with neα 6= 0. In this case we can define f(α̃) to be any real number.

Case 2: There does exist an equation

(1)
∑
α∈A

′
nαα+ neαα̃ = 0



SCISSORS CONGRUENCE 5

with neα 6= 0. Choose one such equation and define

f(α̃) = −
∑
α∈A

′
nα
neα f(α).

We must show that f is integrally additive on Ã. Suppose we have an integral
linear dependence

(2)
∑
α∈A

′
mαα+meαα̃ = 0.

If meα = 0, the lemma follows immediately, so suppose that meα 6= 0. Multiply
Equation (1) by meα, multiply Equation (2) by neα, and subtract to eliminate α̃:

(3)
∑
α∈A

′
(neαmα − nαmeα)α = 0.

Then

(4)
∑
α∈A

′
(neαmα − nαmeα)f(α) = 0.

Next, multiply the equation

(5)
∑
α∈A

′
nαf(α) + neαf(α̃) = 0

by meα and subtract Equation (4) to obtain

(5)
∑
α∈A

′
neαmαf(α) + neαmeαf(α̃) = 0

The fact that neα 6= 0 yields

(7)
∑
α∈A

′
mαf(α) +meαf(α̃) = 0,

as desired. �

Theorem 2.10. Let P and Q be polyhedra and define

M = {π} ∪AP ∪AQ,
where AP and AQ are the sets of dihedral angles of P and Q respectively. Suppose
there exists an integrally additive function f on M such that f(π) = 0. If P and Q
are scissors congruent, then f(P ) = f(Q).

Proof. Decompose P and Q into polyhedra

P = P1 + P2 + · · ·+ Pk

Q = Q1 +Q2 + · · ·+Qk

with the property that Pi ∼= Qi for 1 ≤ i ≤ k. Using Lemma 2.9, we can extend f
to be an integrally additive function on the set consisting of M and all the dihedral
angles of our subpolyhedra. Obviously f(Pi) = f(Qi) for 1 ≤ i ≤ k, and so we have

f(P ) = f(P1) + f(P2) + · · ·+ f(Pk) = f(Q1) + f(Q2) + · · ·+ f(Qk) = f(Q)

by Lemma 2.8. �

Lemma 2.11. The number 1
π arccos

(
1
3

)
is irrational.
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Proof. Using induction and the trig identity

cos((n+ 1)θ) = 2 cos θ cosnθ − cos((n− 1)θ)

we see that cosnθ = Tn(cos θ), where Tn is an n-th degree polynomial with integer
coefficients and whose leading term is 2n−1.

Set φ = arccos
(

1
3

)
and suppose that φ = p

qπ for some positive integers p and q.
Then

Tq

(
1
3

)
= Tq

(
cos
(
p

q
π

))
= Tq

(
cos
(
p
π

q

))
= cos(pπ) = ±1,

whence 1
3 is a root of a polynomial with integer coefficients and leading term 2q−1

for some q. We deduce from Rational Root Test that 3 divides 2q−1 for some q, a
contradiction. �

Theorem 2.12. A regular tetrahedron and a cube of equal volume are not scissors
congruent.

Proof. Let T and C be the regular tetrahedron and cube of volume 1 respectively.
Obviously each dihedral angle of C is π

2 and an easy exercise in analytic geometry
shows that each dihedral angle φ of T equals arccos

(
1
3

)
. Let A be the set

{
π, π2 , φ

}
and define f : A −→ R by setting

f(π) = 0, f
(π

2

)
= 0, f(φ) = 1.

I claim that f is integrally additive. Suppose that

n1π + n2 ·
π

2
+ n3φ = 0

for some integers n1, n2, and n3. If n3 = 0, we immediately see that

n1f(π) + n2 ·
π

2
+ n3φ = n1f(π) + n2f

(π
2

)
= 0.

On the other hand, if n3 6= 0, then
φ

π
= −2n1 + n2

2n3
,

contradicting Lemma 2.11.
Now we compute the Dehn invariants of C and T associated to f . The length of

each side of C is 1, so
f(C) = 12 · 1 · f

(π
2

)
= 0.

Let m be the length of each side of T . From the volume formula for a regular
tetrahedron

V =
√

2
12
m3

we compute

m =
(

12√
2

)1/3

≈ 2.04 6= 0

and thus

f(T ) = 6mf(φ) = 6
(

12√
2

)1/3

6= 0.

Applying (the contrapositive of) Theorem 2.10, we see that T and C are not scissors
congruent. �
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Theorem 2.13 (Sydler, 1965). If P and Q are polyhedra that have equal volumes
and have the property that f(P ) = f(Q) for every integrally additive function sat-
isfying f(π) = 0, then P and Q are scissors congruent.


