Kirillov Theory
TCU GAGA Seminar

Ruth Gornet
University of Texas at Arlington

January 2009
A **representation** of a Lie group G on a Hilbert space \mathcal{H} is a homomorphism

$$\pi : G \rightarrow \text{Aut}(\mathcal{H}) = GL(\mathcal{H})$$

such that $\forall v \in \mathcal{H}$ the map

$$x \mapsto \pi(x)v$$

is continuous.

- If $\pi(x)$ is **unitary** (ie, inner-product preserving) for all $x \in G$, then π is a **unitary representation**

- Note that a subspace of \mathcal{H} will always refer to a **closed** subspace of \mathcal{H}.
A subspace $\mathcal{W} \subset \mathcal{H}$ is G-invariant iff
\[\forall x \in G, \pi(x)(\mathcal{W}) \subset \mathcal{W}. \]

A representation (π, \mathcal{H}) is irreducible iff $\{0\}$ and \mathcal{H} are the only G-invariant subspaces of \mathcal{H}.

A representation (π, \mathcal{H}) is completely reducible iff \mathcal{H} is a(n orthogonal) direct sum of irreducible subspaces.

Two (unitary) representations (π, \mathcal{H}) and (π', \mathcal{H}') are (unitarily) equivalent iff \exists (unitary) isomorphism $T : \mathcal{H} \rightarrow \mathcal{H}'$ such that
\[\forall x \in G \forall v \in \mathcal{H}, T(\pi(x)v) = \pi'(x)(Tv) \]

ie, $T \circ \pi = \pi' \circ T$. The mapping T is called the intertwining operator.
A Lie algebra \(\mathfrak{g} \) is **nilpotent** iff

\[
\cdots \subset [\mathfrak{g}, [\mathfrak{g}, [\mathfrak{g}, \mathfrak{g}]]) \subset [\mathfrak{g}, [\mathfrak{g}, \mathfrak{g}]] \subset [\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{g}
\]

eventually ends. A Lie group \(G \) is **nilpotent** iff its Lie algebra is. For any Lie algebra \(\mathfrak{g} \), there is a unique simply connected Lie group \(G \) with Lie algebra \(\mathfrak{g} \).

Example: The Heisenberg Lie algebra \(\mathfrak{h} = \text{span}\{X, Y, Z\} \) with Lie bracket \([X, Y] = Z\) and all other basis brackets not determined by skew-symmetry zero. Then \([\mathfrak{h}, \mathfrak{h}] = \text{span}\{Z\}\), and \([\mathfrak{h}, [\mathfrak{h}, \mathfrak{h}]] = \{0\}\), so \(\mathfrak{h} \) is **two-step** nilpotent.
Every simply-connected nilpotent Lie group is diffeomorphic to \(\mathbb{R}^n \).

The Lie group exponential \(\exp : g \to G \) is a diffeomorphism that induces a coordinate system on any such \(G \). We denote the inverse of \(\exp \) by \(\log \).
Example: if we use the matrix coordinates given above, which are not the exponential coordinates, then the Lie group exponential is given by

$$\exp(xX + yY + zZ) = e^A,$$

where

$$A = \begin{pmatrix} 0 & x & z \\ 0 & 0 & y \\ 0 & 0 & 0 \end{pmatrix}$$

Note that

$$e^A = \begin{pmatrix} 1 & x & z + \frac{1}{2}xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

We then have

$$\log \left(\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \right) = xX + yY - \frac{1}{2}xyZ$$
The **co-adjoint action** of G on $g^*(=\text{dual of } g)$ is given by

$$x \cdot \lambda = \lambda \circ \text{Ad}(x^{-1})$$

(We need the inverse to make it an action.)

Group actions induce equivalence relations $=$ partitions

So, g^* can be partitioned into **coadjoint orbits**

Note that as sets $\lambda \circ \text{Ad}(G^{-1}) = \lambda \circ \text{Ad}(G)$, so we drop the inverse when computing an entire orbit.
Example: The co-adjoint action of the Heisenberg group. Let \(\{\alpha, \beta, \zeta\} \) be the basis of \(\mathfrak{h}^* \) dual to \(\{X, Y, Z\} \). Let \(\lambda \in \mathfrak{h}^* \).

- Note that for \(x \in H \) and \(U \in \mathfrak{h} \),

\[
\operatorname{Ad}(x)(U) = \frac{d}{dt}\bigg|_{t=0} \exp(tU)x^{-1} = U + [\log x, U]
\]

- Case 1: If \(\lambda(Z) = 0 \), then \(\lambda \circ \operatorname{Ad}(x) = \lambda \), \(\forall x \in H \)

- Case 2: If \(\lambda(Z) \neq 0 \), then let \(\lambda = a\alpha + b\beta + c\zeta \). Let

\[
x = \begin{pmatrix} 1 & -b/c & * \\ 0 & 1 & a/c \\ 0 & 0 & 1 \end{pmatrix}
\]

Note that \(\log x = -\frac{b}{c}X + \frac{a}{c}Y + *Z \)

- Claim: \(\lambda \circ \operatorname{Ad}(x) = c\zeta \). Assuming this is true for the moment, this means that the coadjoint orbit of an element in this case is completely determined by its value at \(Z \).
The computation:

\[(\lambda \circ \text{Ad}(x))(X) = \lambda (X + \log x, X) = \lambda (X + [-\frac{b}{c}X + \frac{a}{c}Y + *Z, X]) \]

\[= \lambda (X) - \frac{a}{c} \lambda (Z) = 0 = c\zeta(0) \]

Likewise

\[(\lambda \circ \text{Ad}(x))(Y) = \lambda (Y + \log x, Y) = \lambda (Y + [-\frac{b}{c}X + \frac{a}{c}Y + *Z, Y]) \]

\[= \lambda (Y) - \frac{b}{c} \lambda (Z) = 0 = c\zeta(0) \]

Finally,

\[(\lambda \circ \text{Ad}(x))(Z) = \lambda (Z + \log x, Z) = \lambda (Z) = c = c\zeta(Z) \]
Let G be a simply connected nilpotent Lie group

Let \hat{G} denote the equivalence classes of irreducible unitary representations of G.

Kirillov Theory: \hat{G} corresponds to the co-adjoint orbits of \mathfrak{g}^*

(i) $\forall \lambda \in \mathfrak{g}^* \exists$ irred unitary rep π_{λ} of G that is unique up to unitary equivalence of reps

(ii) $\forall \pi \in \hat{G} \exists \lambda \in \mathfrak{g}^*, \pi \sim \pi_{\lambda}$

(iii) $\pi_{\lambda} \sim \pi_{\mu}$ iff $\mu = \lambda \circ \text{Ad}(x)$ for some $x \in G$
Let $\lambda \in \mathfrak{g}^*$

A subalgebra $\mathfrak{k} \subset \mathfrak{g}$ is **subordinate to** λ iff $\lambda([\mathfrak{k}, \mathfrak{k}]) = 0$. Let $K = \exp(\mathfrak{k})$, the simply connected Lie subgroup of G with Lie algebra \mathfrak{k}. We also say K is subordinate to λ.

If \mathfrak{k} is maximal with respect to being subordinate, then \mathfrak{k} (or K) is a **polarization** of λ, or a **maximal subordinate subalgebra** for λ.

Define a **character** ($= 1$-dim’l rep) of $K = \exp(\mathfrak{k})$ by

$$\bar{\lambda}(k) = e^{2\pi i \lambda \log k} \in \mathbb{C}.$$

This is a homomorphism.

Kirillov Theory

Ruth Gornet
Why is this a homomorphism?

\[\tilde{\lambda}(k) = e^{2\pi i \lambda \log k} \in \mathbb{C}. \]

Recall the Campbell-Baker-Hausdorff formula:

\[\exp(A) \exp(B) = \exp(A + B + \frac{1}{2}[A, B] + \text{higher powers of bracket}). \]

So \(\tilde{\lambda}(k_1 k_2) = e^{2\pi i \lambda (\log k_1 + \log k_2 + \frac{1}{2}[\log k_1, \log k_2] + \cdots)} \)

\[= e^{2\pi i \lambda (\log k_1)} e^{2\pi i \lambda (\log k_2)} \text{ since } \lambda([\mathfrak{g}, \mathfrak{g}]) = 0. \]
Example: Consider the Heisenberg group and algebra. Let \(\lambda \in \mathfrak{h}^* \). If \(\lambda(Z) = 0 \), then the polarization \(\mathfrak{k} = \mathfrak{h} \). That is, \(\lambda([\mathfrak{h}, \mathfrak{h}]) = 0 \).

If \(\lambda(Z) \neq 0 \), let \(\mathfrak{k} = \text{span}\{ Y, Z \} \). Then \(\mathfrak{k} \) is abelian, so \(\lambda([\mathfrak{k}, \mathfrak{k}]) = 0 \). This is a polarization, ie, maximal.

There are other polarizations. They are not unique.

So then for all \((0, y, z) \in H \) (with the obvious correspondence between coordinates)

\[
\bar{\lambda}((0, y, z)) = e^{2\pi i \lambda(yY + zZ)}.
\]
The representation π_λ of Kirillov Theory is defined as the representation of G induced by the representation $\tilde{\lambda}$ of K.

What the heck is an induced representation?
Let G be a Lie group with closed Lie subgroup K. Let (π, \mathcal{H}) be a unitary rep of H.

Define the representation space of the induced rep

$$\mathcal{W} := \{ f : G \to \mathcal{H} : f(kx) = \pi(k)(f(x)) \forall k \in K, \forall x \in G \}.$$

We also require that $\|f\| \in L^2(K \backslash G, \mu)$. Note that $\pi(k)$ is unitary.

So $\|f(kx)\| = \|\pi(k)f(x)\| = \|f(x)\|$, so $\|f\|$ induces a well-defined map from $K \backslash G$ to \mathbb{R}. Can put a right G-invariant measure μ on $K \backslash G$.

\mathcal{W} is a Hilbert space

Define a rep $\tilde{\pi}$ of G on \mathcal{W} by

$$\tilde{\pi}(a)f(x) = f(xa).$$

$\tilde{\pi}$ is a unitary rep of G, the unitary rep induced by the unitary rep π of $K \subset G$.

Ruth Gornet Kirillov Theory
Recall: we have $\lambda \in g^*$, a polarization \mathfrak{k} of λ and a character
$\bar{\lambda}(k) = e^{2\pi i \lambda(\log k)}$ of $\exp(\mathfrak{k})$.

The representation space of π_{λ} is then

$$W = \{ f : G \to \mathbb{C} : f(kx) = e^{2\pi i \lambda \log k} f(x) \quad \forall k \in K \}.$$

G acts by right translation on W

Kirillov showed that π_{λ} is unitary and irreducible
Example: The Heisenberg group and algebra. Let $\lambda \in \mathfrak{h}^*$.

Case 1: $\lambda(Z) = 0$, $\implies K = H$. Then $\bar{\lambda}$ is a character of H that is independent of Z,

$$\bar{\lambda}(x, y, z) = e^{2\pi i \lambda(xX + yY)}.$$

The induced rep π_{λ} is unitarily equivalent to $\bar{\lambda}$.

To see this, note that the representation space \mathcal{W} is defined as

$$\mathcal{W} = \{ f : H \rightarrow \mathbb{C} : f(hx) = e^{2\pi i \lambda \log h} f(x) \quad \forall h \in H \forall x \in H \}.$$

Letting $x = e$

$$\mathcal{W} = \{ f : H \rightarrow \mathbb{C} : f(h) = e^{2\pi i \lambda \log h} f(e) \quad \forall h \in H \} = \mathbb{C} \bar{\lambda}$$
Case 2: \(\lambda(Z) \neq 0 \implies K = (0, y, z) \)

\(\bar{\lambda}((0, y, z)) = e^{2\pi i \lambda(yY + zZ)} \) So that

\[\mathcal{W} = \{ f : H \to \mathbb{C} : f(kx) = f(x) \forall k \in K \} \]

\((x, y, z) = (0, y, z)(x, 0, 0) \), so

\[f(x, y, z) = f((0, y, z)(x, 0, 0)) = e^{2\pi i \lambda(yY + zZ)} f(x, 0, 0). \]

Note that we can choose \(\lambda = c\zeta \)

This is equivalent to an action on \(\mathcal{W}' = \{ f : \mathbb{R} \to \mathbb{C} \} \)

What does this action look like. \(H \) acts on \(\mathcal{W} \) by right multiplication, so

\[(\pi'_\lambda((x, y, z)) f)(u) = e^{2\pi i c(z + py)} f(u + x). \]
Let $\Gamma \subset G$ be a cocompact, discrete subgroup of G.

Example: Recall that the Heisenberg group can be realized as the set of matrices

$$H = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$$

A cocompact (i.e., $\Gamma \backslash G$ compact) discrete subgroup of H is given by

$$\left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{Z} \right\}$$

(The existence of a cocompact, discrete subgroup places some restrictions on g, and it also implies that G is unimodular.)
The **right action** ρ of G on $L^2(G)$ is a representation of G on $\mathcal{H} = L^2(G)$:

$$ (\rho(a)f)(x) = f(xa) \quad \forall a \in G, x \in G $$

The **quasi-regular representation** ρ_Γ of G on $\mathcal{H} = L^2(\Gamma \backslash G)$ is given by

$$ (\rho_\Gamma(a)f)(x) = f(xa) \quad \forall a \in G, x \in \Gamma \backslash G $$

We generally view functions $f \in L^2(\Gamma \backslash G)$ as left-Γ invariant functions on G, ie

$$ f(\gamma x) = f(x) \quad \forall \gamma \in \Gamma \forall x \in G $$

Both ρ and ρ_Γ are unitary.
Of interest to spectral geometry is determining the decomposition of the quasi-regular representation ρ_Γ of G on $L^2(\Gamma \backslash G)$.

To see why, we consider left invariant metrics on the Lie group G.

A left invariant metric on G corresponds to a choice of inner product $\langle \ , \ \rangle$ on g.
Let $f \in C^\infty(M)$

Recall that

$$(\Delta f)(p) = - \sum_j ((E_j(p))^2 + \nabla_{E_j(p)}E_j(p))f(p)$$

Claim: On $\Gamma \backslash G$, with Riemannian metric induced from $\langle \ , \rangle$ on g, $\Delta = - \sum_j E_j^2$, where $\{E_1, \ldots, E_n\}$ is an ONB of g.

From the standard proof of uniqueness of the Levi-Civita connection

$$2 \langle \nabla_X Y, W \rangle = X \langle Y, W \rangle + Y \langle X, W \rangle - W \langle X, Y \rangle$$

$$+ \langle [X, Y], W \rangle + \langle [W, X], Y \rangle - \langle [Y, W], X \rangle$$

But if X, Y, W are left-invariant, then

$$\langle \nabla_X Y, W \rangle = \frac{1}{2} (\langle [X, Y], W \rangle + \langle [W, X], Y \rangle - \langle [Y, W], X \rangle)$$
Claim: $\sum_j \nabla E_j E_j = 0$

Proof: $\left\langle \sum_j \nabla E_j E_j, U \right\rangle = \sum_j \left\langle \nabla E_j E_j, U \right\rangle$

$= \frac{1}{2} \sum_j \left\langle [U, E_j], E_j \right\rangle + \left\langle [U, E_j], E_j \right\rangle + \left\langle [E_j, E_j], U \right\rangle$

$= \sum_j \left\langle \text{ad}(U)E_j, E_j \right\rangle = \text{tr}(\text{ad}U)$.

Since G is unimodular, $\text{tr}(\text{ad}U) = 0$ for all $U \in g$.

See, eg, the Springer Encyclopedia of Mathematics (online) entry on unimodular.
A representation π of a Lie algebra \mathfrak{g} on a Hilbert space \mathcal{H} is a linear map

$$\pi : \mathfrak{g} \to \text{End}_\mathbb{R}(\mathcal{H})$$

such that $\pi([X, Y]) = [\pi(X), \pi(Y)]$

Let (π, \mathcal{H}) be a representation of G. Define

$$\mathcal{H}^\infty_\pi = \{ v \in \mathcal{H} : x \mapsto \pi(x)v \text{ is smooth} \},$$

the smooth vectors of \mathcal{H} with respect to π.

\mathcal{H}^∞_π is G-invariant and dense
The derived representation π_* of \mathfrak{g} associated to the representation (π, \mathcal{H}) of G is defined as, for $X \in \mathfrak{g}$

$$\pi_*(X)v = \frac{d}{dt}|_0\pi(\exp(tX))v,$$

where $\pi_*(X) : \mathcal{H}_\pi^\infty \to \mathcal{H}_\pi^\infty$

If (π, \mathcal{H}) and (π', \mathcal{H}') are unitarily equivalent, so are their derived representations.
If $E \in \mathfrak{g}$, then
\[E(x) = \frac{d}{ds} |_0 x \cdot \exp(sE). \]

Let $f \in C^\infty(\Gamma \backslash G)$, then
\[Ef(x) = \frac{d}{ds} |_0 f(x \cdot \exp(sE)) \]
\[= \frac{d}{ds} |_0 \rho_\Gamma(\exp(sE)f)(x) \]
\[= (\rho_{\Gamma^*}(E)f)(x) \]
So we extend Δ to \mathcal{H}^∞ by
\[\Delta f = - \sum_j \rho_{\Gamma^*}(E_j)^2 \]
Kirillov theory says that $L^2(\Gamma \backslash G)$ can be decomposed into the orthogonal sum of various π_λ, for $\lambda \in \mathfrak{g}^*$, each π_λ occurring with finite multiplicity.

We seek a condition that says when π_λ occurs, and with what multiplicity.
A rational Lie algebra is a Lie algebra defined over \(\mathbb{Q} \) rather than \(\mathbb{R} \). If we take \(g_\mathbb{Q} \otimes \mathbb{R} \), we obtain a real Lie algebra.

A choice of cocompact, discrete subgroup of \(G \) determines a rational structure. In particular, the existence of \(\Gamma \) implies that we can pick a basis of \(g \) from the set \(\log \Gamma \), which implies that the structure constants are rational on this basis.

Then \(g_\Gamma = \text{span}_\mathbb{Q}\{\log \Gamma\} \) is a rational Lie algebra.

A subalgebra \(\mathfrak{k} \subset g \) is a rational Lie subalgebra iff there exists subalgebra \(\mathfrak{k}_\mathbb{Q} \subset g_\Gamma \) such that \(\mathfrak{k} = \mathfrak{k}_\mathbb{Q} \otimes \mathbb{R} \). That is, there exists a basis of \(\mathfrak{k} \) contained in \(g_\Gamma \).
If \mathfrak{k} is a rational subalgebra of \mathfrak{g} (with respect to Γ), then $\Gamma \cap \exp(\mathfrak{k})$ is a cocompact, discrete subgroup of $K = \exp(\mathfrak{k})$.

To obtain a multiplicity formula, we must consider $\lambda \in \mathfrak{g}$ that have rational polarizations, and such that $\bar{\lambda}(\Gamma \cap \exp(\mathfrak{k})) = 1$. Thus $\bar{\lambda}$ is really a mapping on $\Gamma \cap K \backslash K$.

We call the pair $(\bar{\lambda}, \mathfrak{k})$ and integral point iff \mathfrak{k} is rational (with respect to the rational structure induced by Γ) and $\bar{\lambda}(\Gamma \cap \exp(\mathfrak{k})) = 1$.
Consider the set $F = \text{all pairs } (\bar{\lambda}, \xi) \text{ where } \bar{\lambda} \text{ is the character of } \exp(\xi) \text{ determined by } \lambda \in g, \text{ and } \xi \text{ is a polarization of } \lambda.$

G acts by conjugation on F:

$$x \cdot (\bar{\lambda}, \xi) = (\bar{\lambda} \circ I_x, \text{Ad}(x^{-x})(\xi)),$$

for all $x \in G$.

Fact: If $(\bar{\lambda}, \xi) \in F$, then $x \cdot (\bar{\lambda}, \xi) \in F$. The isotropy subgroup of the point $(\bar{\lambda}, \xi)$ is $\exp(\xi)$.

Fact: Γ maps integral points of F to integral points of F.
Theorem: (L. Richardson and R. Howe) Let $\lambda \in \mathfrak{g}^*$ and let $(\bar{\lambda}, \kappa)$ induce π_{λ}. Then π_{λ} occurs in the rep ρ_Γ of G on $L^2(\Gamma \backslash G)$ iff the G-orbit of $(\bar{\lambda}, \kappa)$ contains an integral point. The multiplicity of π_{λ} is equal to the number of Γ-orbits on the set of integral points in the G-orbit of $(\bar{\lambda}, \kappa)$.

Restated:

$$m(\pi_{\lambda}, \rho_\Gamma) = \# \{ \Gamma \backslash \lambda(\text{Ad}(G))_\Gamma \},$$

where $\lambda(\text{Ad}(G))_\Gamma$ is the set of integral points of the co-adjoint action of G.