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» A representation of a Lie group G on a Hilbert space H is a
homomorphism

m: G — Aut(H) = GL(H)
such that Vv € H the map
x — m(x)v

is continuous.

> If m(x) is unitary (ie, inner-product preserving) for all x € G,
then 7 is a unitary representation

» Note that a subspace of ‘H will always refer to a closed
subspace of H.
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» A subspace W C H is G-invariant iff
Vx € G, m(x)(W) C W.

> A representation (7, H) is irreducible iff {0} and H are the
only G-invariant subspaces of H.

> A representation (7, H) is completely reducible iff 7 is a(n
orthogonal) direct sum of irreducible subspaces.

» Two (unitary) representations (m, H) and (7', H’) are
(unitarily) equivalent iff 3 (unitary) isomorphism
T : ' H — H' such that
Vx € GVv € H, T(m(x)v) = 7' (x)(Tv)

ie, Tom =7"o T. The mapping T is called the intertwining
operator.
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» A Lie algebra g is nilpotent iff

-+ C g, (g, (9,0l C [g;[g,0]] C[g,0] Cog

eventually ends. A Lie group G is nilpotent iff its Lie algebra
is. For any Lie algebra g, there is a unique simply connected
Lie group G with Lie algebra g.

» Example: The Heisenberg Lie algebra h = span{X, Y, Z} with
Lie bracket [X, Y] = Z and all other basis brackets not
determined by skew-symmetry zero. Then [h, h] = span{Z},
and [b, [, h]] = {0}, so b is two-step nilpotent.
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» Every simply-connected nilpotent Lie group is diffeomorphic
to R”

» The Lie group exponential exp : g — G is a diffeomorphism
that induces a coordinate system on any such G. We denote
the inverse of exp by log.
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» Example: if we use the matrix coordinates given above, which
are not the exponential coordinates, then the Lie group
exponential is given by

exp(xX + yY + zZ) = &,

where
0 x z
A=10 0 y
0 0O
» Note that
1 x z+ %xy
et = 1
0 0 1
» We then have
1 x z 1
log 01 y :XX+yY—§xyZ
0 01
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The co-adjoint action of G on g*(= dual of g) is given by
x-A=AoAd(x?1)

(We need the inverse to make it an action.)
Group actions induce equivalence relations = partitions
So, g* can be partitioned into coadjoint orbits

Note that as sets A o Ad(G™1) = A o Ad(G), so we drop the
inverse when computing an entire orbit.
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» Example: The co-adjoint action of the Heisenberg group. Let
{a, 3,(} be the basis of h* dual to {X,Y,Z} Let A € h*.

» Note that for x € H and U € b,
d -1
Ad(x)(V) = E‘OX exp(tU)x™" = U + [log x, U]

» Case 1: If A\(Z) =0, then Ao Ad(x) =\, VxeH
» Case 2: If A\(Z) #0, then let A = acv + b3 + c(. Let

1 —b/c =«
x=[0 1 a/c
0 0 1

Note that log x = —%X +2Y 4+ xZ

» Claim: X o Ad(x) = c(. Assuming this is true for the moment,
this means that the coadjoint orbit of an element in this case
is completely determined by its value at Z.
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» The computation:
(AoAd(x))(X) = M(X+][log x, X]) = )\(X+[—§X+;Y—|—*Z,X])

= A(X) = 2M(2) = 0= <((0)

> Likewise

(AAd(x))(Y) = A(Y-+[log x, Y]) = )\(Y+[—§X+; Y47, Y))

» Finally,

(Ao Ad(x))(Z) = MZ + [logx, Z]) = AN(Z) = c = c((Z)
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Kirillov Theory of Unitary Representations

v

Let G be a simply connected nilpotent Lie group

v

Let G denote the equivalence classes of irreducible unitary
representations of G.

Kirillov Theory: G corresponds to the co-adjoint orbits of g*

v

v

(i) VA € g* 3 irred unitary rep 7y of G that is unique up to
unitary equivalence of reps

(i) Vr € G3X € g*, m ~ my
(iii) m\ ~ 7, iff © = Ao Ad(x) for some x € G

v

v

Ruth Gornet Kirillov Theory



> Let A e g*

> A subalgebra £ C g is subordinate to \ iff \([¢,€]) = 0. Let
K = exp(t), the simply connected Lie subgroup of G with Lie
algebra . We also say K is subordinate to A.

If € is maximal with respect to being subordinate, then ¢ (or
K) is a polarization of A\, or a maximal subordinate
subalgebra for A

Define a character(= 1-dim’'l rep) of K = exp(t) by
S\(k) — e27ri/\Iogk eC.

This is a homomorphism.
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» Why is this a homomorphism?

A(k) _ e27ri/\logk e C.

» Recall the Campbell-Baker-Hausdorff formula:
1
exp(A) exp(B) = exp(A+B+§[A, B]+higher powers of bracket).

» So /_\(klkg) _ e27ri)\(|ogk1+logk2+%[log ki,log ko]++-+)

> — e27ri)\(|ogk1)e27ri/\(log k2) since )\([g’ E]) —-0.
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» Example: Consider the Heisenberg group and algebra. Let
A€ bh*. If A(Z) =0, then the polarization £ = h. That is,

> If AM(Z) #0, let £ =span{Y,Z}. Then ¢ is abelian, so
([, €]) = 0. This is a polarization, ie, maximal.

» There are other polarizations. They are not unique.

» So then for all (0,y,z) € H (with the obvious correspondence
between coordinates)

X(0.y,2)) = 20V +22)
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» The representation 7y of Kirillov Theory is defined as the
representation of G induced by the representation A of K.

» What the heck is an induced representation?
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Inducing Representations

>

Let G be a Lie group with closed Lie subgroup K. Let (7, H)
be a unitary rep of H.
Define the representation space of the induced rep

W:={f:G— H: f(kx) =n(k)(f(x))Vk € K,Vx € G}.

We also require that ||f|| € L>(K\G, i). Note that (k) is
unitary.

So |1 (k)| = 1= (K)F (I = IF(], so [If]] induces a
well-defined map from K\ G to R. Can put a right G-invariant
measure £ on K\G.

W is a Hilbert space

Define a rep 7 of G on W by

((a)f)(x) = f(xa).

7 is a unitary rep of G, the unitary rep induced by the unitary
rep m of K C G.
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> Recall: we have A € g%, a polarization € of A and a character
A(k) = 2miA1og k) of exp(t).

» The representation space of ) is then
W={f:G—C:flkx) =8 f(x) VkeK}.

» G acts by right translation on W

» Kirillov showed that ) is unitary and irreducible
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» Example: The Heisenberg group and algebra. Let A € h*.

» Case 1: A\(Z) =0, => K = H. Then X is a character of H
that is independent of Z,
S\(X,y, Z) — e271'i)\(xX+yY).

The induced rep 7y is unitarily equivalent to \.

» To see this, note that the representation space WV is defined as
W={f:H—C:f(hx)=e®™"*ef(x) Vhe HVYx € H}.
> Letting x =e

W ={f:H—C:f(h)=e**ef(e) Vhe H}=C\
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Case 2: \M(Z) #0 = K =(0,y,2)
X((0,y, z)) = e2™AMyY+2Z) So that

W={f:H—C: f(kx) =f(x)Vk € K}

(x,y,2) = (0,y,2)(x,0,0), so
F(x,y.2) = F((0,y,2)(x,0,0)) = &MY +2)£(x,0,0).

» note that we can choose A = ¢(

» This is equivalent to an action on W = {f : R — C}

» What does this action look like. H acts on W by right

multiplication, so (74 ((x,y, z))f)(u) = e™<E+P)f (4 + x).
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» Let [ C G be a cocompact, discrete subgroup of G.

» Example: Recall that the Heisenberg group can be realized as
the set of matrices

1
H= 0 ' x,y,z€R
0

o~ X
— < N

» A cocompact (ie, '\G compact) discrete subgroup of H is
given by

1
0 X, ¥, Zz€Z
0

O R X
=< N

» (The existence of a cocompact, discrete subgroup places some
restrictions on g, and it also implies that G is unimodular.)
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» The right action p of G on L?(G) is a representation of G on
H = L%(G):

(p(a)f)(x) = f(xa) Vae G,xe G

» The quasi-regular representation pr of G on H = L?(I'\G)
is given by

(pr(a)f)(x) = f(xa) Vae G,xel\G

> We generally view functions f € L2(F\G) as left-I" invariant
functions on G, ie

f(yx) = f(x) Vyelvx e G

» Both p and pr are unitary.
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» Of interest to spectral geometry is determining the
decomposition of the quasi-regular representation pr of G on

L2(T\G).

» To see why, we consider left invariant metrics on the Lie
group G

» A left invariant metric on G corresponds to a choice of inner
product { , )ong.
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Let f € C°°(M)

» Recall that

(AF)(p) = =Y ((Ei(p)* + V() Ei(P)))(P)
J
Claim: On '\ G, with Riemannian metric induced from
( , )ong A= —ZJ-EJ?, where {Ej,...,E,} is an ONB
of g.
From the standard proof of uniqueness of the Levi-Civita
connection

2(VxY, W) =X (Y, W)+ Y (X,W)— W (X,Y)
+<[X, Y]: W> + <[W,X], Y> - <[Y7 W]7X>

But if X, Y, W are left-invariant, then

(VxY, W) = % (X, YT, W) + (W, X], Y) = ([Y, W], X))
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Claim: >, VEE; =0

Proof: <ZjijEj, U> = (V&E;, U)

=3 % (U, Bl B)) + (U, B E})) + ([}, £}, U])

= 5, (ad(V)E;. E}) = tr(adU).

Since G is unimodular, tr(adU) = 0 for all U € g. O

See, eg, the Springer Encyclopedia of Mathematics (online)
entry on unimodular.
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» A representation 7 of a Lie algebra g on a Hilbert space H is

a linear map
7 : g — Endr(H)

such that 7([X, Y]) = [7(X), 7(Y)]
> Let (m,H) be a representation of G. Define

HY ={veH: x— m(x)vis smooth},

the smooth vectors of  with respect to 7.

» H° is G-invariant and dense
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» The derived representation 7, of g associated to the
representation (7, H) of G is defined as, for X € g

m(X)v = & lom(exp(£X)v,
where 7. (X) : HS® — H°

» If (m,H) and (7', H') are unitarily equivalent, so are their
derived representations.
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If E € g, then
d
E(x) = E‘OX - exp(sE).
Let f € C*°(I'\G), then

EF(x) = & lof(x - exp(sE))

= % lopr(exp(sE)f)(x)

> = (pr(E)F)(x)
» So we extend A to H™ by

Af = — ZPF*(EJ)z
Jj
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» Kirillov theory says that L?(\G) can be decomposed into the
orthogonal sum of various my, for A € g*, each m) occuring
with finite multiplicity.

» We seek a condition that says when 7 occurs, and with what
multiplicity.
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» A rational Lie algebra is a Lie algebra defined over QQ rather
than R. If we take gg ® R, we obtain a real Lie algebra.

> A choice of cocompact, discrete subgroup of G determines a
rational structure. In particular, the existence of I' implies
that we can pick a basis of g from the set log ", which implies
that the structure constants are rational on this basis.

> Then gr = spang{log '} is a rational Lie algebra.

» A subalgebra £ C g is a rational Lie subalgebra iff there
exists subalgebra £g C gr such that £ = £g ® R. That is, there
exists a basis of ¥ contained in gr.
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» If € is a rational subalgebra of g (with respect to I'), then
I Nexp(t) is a cocompact, discrete subgroup of K = exp(¥).

> To obtain a multiplicity formula, we must consider A € g that
have rational polarizations, and such that A(" N exp(t)) = 1.
Thus A is really a mapping on ' K\ K.

> We call the pair (\, ) and integral point iff £ is rational (with
respect to the rational structure induced by I') and

AT Nexp(t)) = 1.
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» Consider the set F = all pairs (), £) where X is the character
of exp(t) determined by A € g, and ¢ is a polarization of \.

» G acts by conjugation on F :
x- (N 8) = (Mo L, Ad(x)(8)),

for all x € G.

> Fact: If (), t) € F, then x - (), €) € F. The isotropy subgroup
of the point (A, ) is exp(¥).

» Fact: I maps integral points of F to integral points of F
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» Theorem: (L Richardson and R. Howe) Let A € g* and let
(X, €) induce 7). Then 7y occurs in the rep pr of G on
L2(T'\G) iff the G-orbit of (), €) contains an integral point.
The multiplicity of 7y is equal to the number of -orbits on
the set of integral points in the G-orbit of (), ¢).

> Restated:
m(my, pr) = #{\AMAd(G))r},

where A\(Ad(G))r is the set of integral points of the co-adjoint
action of G.
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