lgor’s Lecture: Functional Determinants

Motivation from Physics

In statistical physics one has to calculate Gaussian iategh simple example of such an
integral is the partition function

_[. . .jexp(—(Ax,x))%,

whereA is ann x n symmetric matrix with positive eigenvalues, apnd) denotes the
Euclidean scalar product. After an orthogonal change ofdinates which diagonalize’s
this integral becomes

n
dxy...dx 1 1
o expl =) Aix? L n — = .
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In quantum field theory, they instead compute

Z - [exp(-1(9)) [Dg],

where integration may take place over an infinite-dimenai@ector space of smooth (or
continuous) functions on a compact manifold or of smoothsrizgiween manifolds. Here

[D¢] = measure on this space,
I(¢) = positive definite quadratic form representing the Lagrang

See, for example, Witten’s talk at the 1996 ICM in Berkelelge Teplacements we have made
are:

X~ ¢:M->N
EXP(—(AX, X)) = exp(=1(¢))
dx17.[;1/.2dxn - D($).
If Ais ann x n matrix with eigenvalueg, ..., i, then
detA = 11...An.
This is hard to generalize, unless we use a Fredholm detantiie
A=lmAn

where each, is finite dimensional. Interesting example for physicists
Let M = S', we integrate over the space of zero-average real-valuedifuns on\i:

Z(Sh) = jeXp(—l(fﬁ))[Dqﬁ]-
[D¢] = Gaussian measure

I$) = [ W' OF dt



After integration by parts:

16) = [ (-S50.9).

1

dZ
/de _F>
could serve as a definition af{S*)!

Goal: extend definition of determinant to a class of infinitenginsional operators.
Consider a positive x n symmetric matrixA with eigenvalues. 4, ..., An. Then

The expression

de(A) = A1...An.

In infinite dimensional space, we wish to get a number.
One simple case is that of the Fredholm determinant. Fordedioperators : H — H
which are limits of finite-dimensional operators, we say

detrr (A) = im dei(An).
If Ais bounded and trace class, then
dety (€A) = eTA,
and also
dets (AB) = dety (A) dete (B).

In general, for any. > O,

d| 1 __
e LO L~ -In).
Then
In(detA) = D In(4i)
i>1

— _Q -s _ _//

= G | o 227 = A0
where

Ca(s) = Tr(A™®) = ) 27

i>1

is the zeta function of\. For a positive symmetric matrix, this works, and the zetecfion is
analytic on the whole complex plane. This was first intraetiby Ray and Singer in 1971.



detA = exp(—{'A(0)).

This formula generalizes to the case of self-adjoint unidedroperators on Hilbert space.
Assume that the eigenvalues/fre positive and satisfy

An = c(nf) + O(n%),k>0,c>0
asn — co. Then the infinite sum

Ca(s) = D A7

i>1

converges foRe(s) sufficiently large (say > k— 1). In many interesting cases(s) can be
meromorphically continued to the whole compteglane so that it is regular at= 0. The
poles and residues are known.

Example (Sturm - Liouville)
LetM = SL, Ap = —¢", $(0) = ¢(21), '(0) = ¢'(27). One has

Ao =0,1nh =n%forn>1

with multiplicity two (eigenfunctionsin(ng), cognd)). We have

(a(s) =2 nlzs = 2¢(2s), Re(s) > %

where((s) is the Riemann zeta function.
We have

¢a(0) = 40'(0) = —2log(2r).
Thus
detA = exp(—¢,(0)) = exp(2log(2r)) = 4r?2.

Also, it can be shown that

{a(0) = —5-

Example (Harmonic Oscillator)
LetH = Hamiltonian for quantum mechanical harmonic oscillator.

_d(_d 2)

Hy 2( v, + X )y,

wherey is a smootH.? function onR. The eigenvalues are
An = n+%,n -0,1,2,3,...,

and the eigenfunctions are

Wn = exp(—x—22> Hn(X),



whereH(x) are Hermite polynomials. We have
Cu(s) = Z<n+ —> Re(s) > 1.
—o
This operator zeta function is a particular case of the Huzragta function

na(s) = D_(n+a)°, Re(s) > 1.
n=0
Then it turns out that
de(H) = ‘/? - J2.
r(z)
This is a particular case of the Hurwitz zeta function

{u(sa) =Y (n+a)™

>0

Example (Laplacian on Torus)
Af = Af = —fo — Ty,
wheref is doubly periodic, i.e.
f(x+ 2ra,y + 2rb) = f(X,y)
for specifica,b € R. The eigenvalues of this operator are
m2

-‘rF,mnEL

corresponding to eigenfunctions
sin(IX) cos(%)

and other similar combinations. The zeta function of thisrapor is related to the Epstein
zeta function of number theory.

Remarks

There is more than one way to regularize an infinite prodéipositive numbers.
Physicists adopt the regularization which leads to thet @giswer in the cases when the
answer is known from other considerations.

Zeta function regularization leads to a multiplicative arady. We have

de((AB) + del(A) dei(B)

in some situations where both sides of the equation make sKonstsevich and Vishik
showed a formula describing this in 1993. For simple examsee Elizalde 1999.

Applications to Riemannian Geometry



Question: does a smooth compact manifold carry a best or a family dfResnannian
structure(s)? For surfaces, the uniformization theoreowslthat any compact surface admits
a metric of constant Gauss curvature. Moreover, on a giveacej these metrics are
completely classified by Teichmdiller theory, forming aitiéadimensional moduli space. The
dimension iS5G - 6, whereG > 2 is the genus of the surface. How about higher dimensions?
Perelman used this to prove the geometrization conjectur@ manifolds.

Possible general scheme of attack: Consider a suitable numerical functiorab)
defined on the space of all metrigsSearch for alty for which the functional is maximum (or
at least critical). In other words,is critical if the derivative of(g) atg is zero for any
variation of the metric. If the functional is scale-depemigeenormalize it. One such
functional is the determinant of the Laplacian.

The Laplacian on functions looks like this in local coorde® LetM be a closed compact
manifold with Riemannian metrig = (gij). Then the Laplacian onfunctions is

- 1 (13 ik
A Jzk ma,(,/ etggl 6k>,

whereg“ is the inverse of the metric matrix. Then the equation

Ap = Lo
has solutions. = Ay for
O0=2A0< A1 <A <

On a manifold of dimension, the eigenvalues grow ask?". Thus we can define a zeta
function and the determinant of the Laplacian as before:

NOED IV
k=1
detA = exp(—¢,(0)).
Theorem (Osgood-Phillips-Sarnak 87) L&t be a closed surface. Among all metrics of
constant area and in a given conformal class (ie of the dype=xp(—¢)go with fixed

metricgo of constant curvature and functigr), the constant curvature metric has
maximum determinant.

Idea of proof: Use a variational formula for the determin@sta function of the
conformal parametep), given by Polyakov-Ray-Singer in 1981 by

Ag - e(pAgo,
j Kop dAo — j Voo |2 dAq

+ logA —logAo,

log detAg — log detAg,

where



Ko = Gauss curvature for metrig),
Vo = gradient forgp,
dA, = area element fogo,
A, Ao = area ofM in metricsg, Qo.

Application:

Theorem (Osgood-Phillips-Sarnak 87) Isospectral sets of surfabesompact in the smooth
topology.

The proof uses the heat invariants afwiA. Note that the heat invariants are the
coefficients in the short time asymptotic expansion of thee of the heat kernelp(—tA).

There are analogous results for manifolds with boundary.

Recently Pollicott-Rocha (1997) derived an explicit fotenfor dei(A) on a surface of
constant negative curvature in terms of lengths of closedescs.

Theorem (Policott, Rocha 1997) Létl be a compact surface of constant negative curvature of
genusyo. Then there exists a constab{depending only on the genus such that

detAM - Czbn ’
n=1

where the summation converges uniformly. Furthermoreteirasb, tend to zero faster
than any exponential. The numbérssatisfy

_ 1 Uya) . ()
bn = Z(_l) ' (e'rv) _11). (e — 1) ’

where the sum is over all closed geodesics ..,y with
[ya] +-.+ye] =n.

Determinants in higher dimensions
The conformal Laplacian for the metrigon M is defined to be

conf _ n-—2
A A+4(n—1)R’

whereR is the scalar curvature. In 1991 Branson and Orsted shove¢dtider conformal
variations of the metric on a closed compact manifold, tieeelocal variation formula for
log detA®" analogous to the Polyakov-Ray-Singer variational formiiate that

A = eCEDrAP (3L,
Theorem (Branson-Chang-Yang 1992) On the standasphere, the standard metric
minimizes log det A®" among all conformal metrics of fixed volume.

Theorem (Branson 1996) On the stand&¥aphere, the standard metniaximizes
log det A®" among all conformal metrics of fixed volume.

Theorem (Morpurgo 1994) Among all metrics o with the same area as the standard metric,
the standard metrimaximizestr (exp(—tA)).

Ordinary Laplacian in Higher Dimensions



Theorem (Richardson 1994) The standard metric®ris a local maximum forlet(A) among
constant volume, conformal variations.

Theorem (Richardson 1994) Ifj, is a critical point fordet A for constant volume conformal
variations of the metric of a closédmanifold, and if-{(1)1; > 5, theng is a local
maximum for the determinant (under conformal variations).

Theorem (Chiu 1995) The determinant of the Laplacian on the spackb8ori of volumel
has a locamaximum at the torus corresponding to the face-centered cubicéatti

General variations of the determinant of the Laplacian

Theorem (Okikiolu 1997) The standard metric @ is a localmaximum for det A under
deformations of the metric which fix the volume.

Theorem (Okikiolu 1997) Letgo be a local extremal point afet A under deformations which
fix the total volume. Ifn = 3,7,11,... thengo is a localmaximum. If n = 5,9,13,. ..
thengp is a localminimum.



