
GEOMETRIC QUANTIZATION

1. The basic idea

The setting of the Hamiltonian version of classical (Newtonian) mechanics is the phase
space (position and momentum), which is a symplectic manifold. The typical example of
this is the cotangent bundle of a manifold. The manifold is the configuration space (ie set
of positions), and the tangent bundle fibers are the momentum vectors. The solutions to
Hamilton’s equations (this is where the symplectic structure comes in) are the equations
of motion of the physical system. The input is the total energy (the Hamiltonian function
on the phase space), and the output is the Hamiltonian vector field, whose flow gives the
time evolution of the system, say the motion of a particle acted on by certain forces. The
Hamiltonian formalism also allows one to easily compute the values of any physical quantities
(observables, functions on the phase space such as the Hamiltonian or the formula for angular
momentum) using the Hamiltonian function and the symplectic structure.

It turns out that various experiments showed that the Hamiltonian formalism of mechanics
is sometimes inadequate, and the highly counter-intuitive quantum mechanical model turned
out to produce more correct answers. Quantum mechanics is totally different from classical
mechanics. In this model of reality, the position (or momentum) of a particle is an element
of a Hilbert space, and an observable is an operator acting on the Hilbert space. The inner
product on the Hilbert space provides structure that allows computations to be made, similar
to the way the symplectic structure is a computational tool in Hamiltonian mechanics.

What is a quantization? The whole point of it is that the quantum mechanics should agree
with classical mechanics to some extent in the situations where classical mechanics is a good
approximation to reality. So a quantization is a map from the set of observables of a classical
system (ie smooth functions on a symplectic manifold) to the set of observables of a quantum
system (ie operators on Hilbert space). This map should satisfy certain properties in order
to preserve the physical interpretations. Still, there are many ways to define a quantization.
Geometric quantization is one type of quantization, and its aim is to provide an intrinsic
construction that is essentially canonical and that is geometrically determined.

2. Hamiltonian Mechanics

2.1. Hamiltonian vector fields and flows. Let (M,ω) be a symplectic manifold. Given
a differentiable function H : M → R (called the Hamiltonian), there exists a unique vector
field XH such that

−dH (Y ) = ω (XH , Y ) , or

−dH = i (XH)ω

for every vector field Y on M . (Note: some authors use a negative sign in the equation
above.) Such a vector field XH exists and is unique because the nondegeneracy of ω implies
that the linear map

i (·)ω : TxM → T ∗xM
1
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has a trivial kernel. In canonical coordinates (ie ω =
∑
dqj ∧ dpj), we have

XH =
∑
−∂H
∂yj

∂xj
+
∂H

∂xj
∂yj
.

Check:

i (XH)ω =
∑

i

(
−∂H
∂yj

∂xj
+
∂H

∂xj
∂yj

)
dxj ∧ dyj

= −
∑(

∂H

∂yj
dyj +

∂H

∂xj
dxj

)
= −dH.

The flow generated by the vector field XH is called the Hamiltonian flow. That is, for
each t ∈ (−ε, ε), let the Hamiltonian flow φtH : M →M be the diffeomorphism defined by

∂

∂t
φtH (x) = XH

(
φtH (x)

)
; φ0

H (x) = x.

For fixed x ∈ M , φtH (x) is just an integral curve of XH with initial point x. Note that the
map f 7→ Xf is a linear map from smooth functions to smooth vector fields. By construction,
observe that the function H is constant along the integral curves of XH (ie H is an integral
of φtH), because

∂

∂t
H
(
φtH (x)

)
= dH

(
∂

∂t
φtH (x)

)
= dH

(
XH

(
φtH (x)

))
,

and

dH (XH) = −ω (XH , XH) = 0

since ω is a 2-form.
Observe that each XH is a symplectic vector field, meaning that

LXH
ω = (d ◦ i (XH) + i (XH) d)ω

= d (i (XH)ω) = 0.

(True since i (XH)ω = −dH, which is closed.) A consequence of this is that for each
t ∈ (−ε, ε), φtH is a symplectomorphism, because

∂

∂t

((
φtH
)∗
ω
)

=
(
φtH
)∗

(LXH
ω) = 0.

Another interesting fact: the set of symplectic vector fields forms a Lie subalgebra of the
Lie algebra of vector fields, and in fact it is the Lie algebra corresponding to the Lie group
of symplectomorphisms. This follows from the fact that if X and Y are symplectic vector
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fields, then

i ([X, Y ])ω = i (LXY )ω = i

(
d

dt

∣∣∣∣
t=0

(
φtX
)
∗ Y

)
ω

=
d

dt

∣∣∣∣
t=0

i
((
φtX
)
∗ Y
)
ω

=
d

dt

∣∣∣∣
t=0

(
φtX
)∗

(i (Y )ω) = LX (i (Y )ω)

= d ◦ i (X) (i (Y )ω) = d (ω (Y,X)) ,

so that i ([X, Y ])ω is also closed.
Note that not every symplectic vector field V is Hamiltonian; V is symplectic iff i (V )ω

is closed. If in fact i (V )ω is exact, then V is Hamiltonian. Thus, the obstruction to a
symplectic vector field being Hamiltonian lies in H1 (M).

Example 2.1. This is the typical example of a Hamiltonian vector field and flow. Consider
the symplectic manifold (R2, ω = dx ∧ dy), with Hamiltonian function H (x, y) = 1

2
(x2 + y2).

Then dH = xdx+ ydy, and

i (x∂y − y∂x)ω = −xdx− ydy = −dH,

so that the Hamiltonian vector field is

XH = ∂θ = (x∂y − y∂x) .

Note that H is constant on the integral curves of XH , which are circles.

2.2. Poisson bracket. A skew-symmetric, bilinear operation on the differentiable functions
on a symplectic manifold M, the Poisson bracket {f, g}, is defined by the formula

{f, g} = ω (Xf , Xg) = −df (Xg) = −Xg (f) = Xf (g) ,

which in canonical coordinates (ie ω =
∑
dxj ∧ dyj is

{f, g} =
n∑
j=1

∂f

∂xj

∂g

∂yj
− ∂f

∂yj

∂g

∂xj
.

Note that

{g, f} = −{f, g}

Proposition 2.2. We have

X{f,g} = [Xf , Xg] ,

where the right hand side represents the Lie bracket of vector fields.

Proof.

ω
(
X{f,g}, Y

)
= −Y ({f, g})
= Y (Xg (f))

= Y (df (Xg))
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and since Xf and Xg are symplectic, by the previous section we have

(i ([Xf , Xg])ω) (Y ) = d (ω (Xg, Xf )) (Y )

= Y (ω (Xg, Xf ))

= −Y (ω (Xf , Xg))

= Y (df (Xg)) .

�

As a consequence, the Poisson bracket satisfies the Jacobi identity

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0,

which means that the vector space of differential functions on M , endowed with the Poisson
bracket, has the structure of a Lie algebra over R, and the assignment f 7→ Xf is a Lie algebra
homomorphism, whose kernel consists of the locally constant functions (constant functions if
M is connected). Note that many books (such as McDuff-Salamon) on symplectic geometry
define [X, Y ] = LYX = −LXY and i (XH)ω = dH so that this still becomes a Lie algebra
homomorphism.

A function g : M → R is called an integral of the flow φtH if g is constant on the integral
curves of XH , ie XH (g) = 0. Clearly, H is an integral.

Proposition 2.3. A function g : M → R is an integral of the Hamiltonian flow associated
to H : M → R if and only if {g,H} = 0.

Proof. XH (g) = {H, g} = −{g,H}. �

2.3. Relationship to Physics: Hamiltonian mechanics. The canonical coordinates for
the phase space of a mechanical system are (p,q) = (p1, ..., pn, q1, ..., qn), where q corresponds
to position and p corresponds to momentum. One often thinks of the manifold as the
cotangent bundle T ∗Q, where Q is the configuration space, and the momentum coordinates
live in the fibers. The symplectic form is

ω =
∑

dpj ∧ dqj.

Given a Hamiltonian function H (the total energy!), the Hamiltonian flow is the solution to
the system of differential equations

∂

∂t
(q,p) = XH (q,p) =

∑
−∂H
∂qj

∂pj
+
∂H

∂pj
∂qj ,

which implies ∑ ∂pj
∂t

∂pj
+
∂qj
∂t
∂qj = XH =

∑
−∂H
∂qj

∂pj
+
∂H

∂pj
∂qj ,

or

∂qj
∂t

=
∂H

∂pj
∂pj
∂t

= −∂H
∂qj

.
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These are know as Hamilton’s equations of motion. For example, if

H = KE + PE

=
‖p‖2

2m
+ V (q) ,

then the equations of the integral curves become

∂q

∂t
=

p

m
∂p

∂t
= −∇V,

coinciding with the physical laws that

momentum = mass ∗ velocity,

Force = −∇V =
∂p

∂t
.

Note that the fact that H is constant along the integral curves is the principle of conservation
of energy.

The evolution of any observable f ∈ C∞ is given by

∂f

∂t
= XHf =

∑
−∂H
∂qj

∂pj
f +

∂H

∂pj
∂qjf.

2.4. Geodesic flow on the cotangent bundle. We repeat the notation given previously.
Let M be any smooth manifold, and let T ∗M denote its cotangent bundle. Then (T ∗M,ω)
is a symplectic manifold, where the symplectic two-form ω is defined as follows. Since the
sections of π : T ∗M →M are one-forms, there is a canonical one-form λ on T ∗M given by

λ (ξx) = π∗ (ξx) ,

where since π (ξx) = x

π∗ : T ∗xM → T ∗ξx (T ∗xM)

is the pullback. The symplectic form ω on T ∗M is

ω = dλ.

Suppose that we have chosen a Riemannian metric on M . Let H : T ∗M → R be the
Hamiltonian function defined by

H (ξx) = ‖ξx‖2 .
The Hamiltonian differential equations obtained are precisely the differential equations of
geodesics. Note that this corresponds to H being (up to a constant) kinetic energy only, so
it means there are no external potentials (and so no external forces).

2.5. Completely integrable Hamiltonian systems. If (M,ω) is a symplectic manifold
of dimension 2n, then it is called completely integrable (or simply integrable) if there exist n
independent Poisson commuting integrals F1, ..., Fn. The word independent means that the
vectors ∇F1, ...,∇Fn are linearly independent at each point and that {Fj, Fk} = 0 for each j,
k. Given such a system, the level sets of the {Fj} are invariant under the Hamiltonian flows
of all n of the functions. Since the functions commute, the compact, connected components
of level sets of the form Tc = {x ∈M : Fj (x) = cj for all j} are n-dimensional tori and are
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in fact Lagrangian submanifolds (ω vanishes on them). Near such an invariant torus, the
symplectic manifold is foliated by such tori, as explained in the next paragraph.

These completely integrable Hamiltonian systems have an extremely simple structure.
There are special coordinates called action-angle variables that are chosen as follows. In a
neighborhood of each invariant torus Tc, the variables (ξ, η) ∈ Tn × Rn are defined by

η = (c1, ..., cn) ,

ξ is a coordinate on each Tc

such that the Hamiltonian flow of H (ξ, η) (thought of as a function on M) is given by the
straight-line solutions of the differential system

ξ̇ =
∂H

∂η
, η̇ = 0.

Thus the physical trajectories can be solved completely by doing integrals!
This dynamical behavior of integrable systems is very exceptional, and an arbitrarily small

perturbation of the dynamical system will destroy many of the invariant tori. On the other
hand, if the frequency vector ξ̇ = ∂H

∂η
has rationally independent coordinates which satisfy

certain Diophantine inequalities and if ∂2H
∂η2 is nonsingular, then the corresponding invariant

torus survives under sufficiently small perturbations which are sufficiently smooth. This is
roughly the content of the Kolmogorov-Arnold-Moser Theorem, from which KAM theory
evolved.

3. Quantization

As mentioned earlier, quantization is an assignment

Q : C∞ (M)→ Op (H)

mapping a classical observable (function on phase space (M,ω) ) to an operator on Hilbert
space H. Following are the rules of canonical quantization.

Q1: Q is R-linear.
Q2: Q maps the constant function 1 to the identity 1 on H.
Q3: Q (f)∗ = Q (f) for all f ∈ C∞ (M). (ie real-valued functions should map to

operators with real spectrum.
Q4: (Dirac’s quantum condition) [Q (f) ,Q (g)] = −i~Q ({f, g}). One may think of

this as a series of commutation relations defining an algebra.
Q5: (irreducibility condition) If {f1, ..., fk} is a complete set of observables, then {Q (f1) , ...,Q (fk)}

is a complete set of operators (meaning the only set of operators that commute with
all of them are multiples of the identity). We are basically finding an irreducible
representation of the algebra defined by (Q1) through (Q4).

Unfortunately, it turns out that it is in general not possible for the quantization to satisfy
both (Q4) and (Q5), and there are many types of quantizations providing a nice compromise.
We will only require that (Q4) hold for a sufficiently complete set of observables. Geometric
quantization is a procedure that addresses the question of existence and classification of
quantizations by slightly changing the rules of the game.

Example: Let Q = Rn, M = T ∗Q with the standard symplectic form ω =
∑
dpj ∧ dqj.

Note that the coordinate functions qk and pl form a complete set of observables. According
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to (Q4) above, we require:[
Q
(
qk
)
,Q
(
ql
)]

= [Q (pk) ,Q (pl)] = 0,[
Q
(
qk
)
,Q (pl)

]
= i~δkl .

Using

{f, g} =
n∑
j=1

∂f

∂pj

∂g

∂qj
− ∂f

∂qj
∂g

∂pj
.

This means that these quantum observables form the Heissenberg algebra, and (Q5) essen-
tially means that we need to find an irreducible representation of this algebra. By the Stone
- von Neumann Theorem, any such representation (that exponentiates to a representation
of the Heissenberg group) is unitarily equivalent to L2 (Q) = L2 (Rn) with

Q
(
qk
)
ψ (x) = xkψ (x)

Q (pl)ψ (x) = −i~ ∂ψ
∂xl

(x) .

(This is the famous Schrödinger representation.) Note that the fact that L2 (Q) is used as
the Hilbert space is not an axiom of the quantum mechanics (ie position replaced by wave
function) but a consequence of the representation theory.

What are the quantizations of other observables? Kinetic energy is p2 =
∑
plpl and should

be represented by

Q
(
p2
)

= ~2∆.

We certainly need quantities like this for the quantum physics. But note that Q (fg) 6=
Q (f)Q (g) in general. By imposing (Q3) or (Q4) we see that

Q
(
plq

k
)

=
1

2

(
Q (pl)Q

(
qk
)

+Q
(
qk
)
Q (pl)

)
.

It turns out that the quadratic observables form a Lie algebra under Poisson brackets, and
that Lie algebra is isometric to sp (n). In general it is desirable that when we quantize a
symplectic vector space, we should obtain a representation of the symplectic Lie algebra. We
have now been able to quantize all the linear observables and quadratic observables (much
more than just the complete set of observables) in a consistent way.

Unfortunately, we are unable to quantize cubic observables (conflict with (Q4) ). Thus,
even in the simplest case, full quantization is not possible.

4. Geometric Quantization

Geometric quantization (GQ) is established in two or more steps. The first step is pre-
quantization. The second step involves something called polarization.

4.1. Prequantization. Prequantization is the construction of an assignment Q that satis-
fies (Q1) through (Q4). The first attempt of a map from the Poisson algebra C∞ (M,ω) to
operators on Hilbert space is

f 7→ −i~Xf ,

where the Hilbert space is some closure of C∞ (M). This map satisfies (Q1), (Q3), and
(Q4), but (Q2) fails because any constant function gets mapped to the zero vector field.



8 GEOMETRIC QUANTIZATION

After a little experimentation, one can show that if M = T ∗Q, then the assignment P :
C∞ (M,ω)→ Op (L2 (M,ω))

P (f) = −i~Xf − θ (Xf ) + f

satisfies (Q1) through (Q4), where θ is the canonical one-form on the cotangent bundle

T ∗Q
π→ Q such that ω = dθ. (Recall: if vy ∈ TyT ∗Q, then θ (vy) = y (π∗vy). ) Note that

P (f) is a linear differential operator on L2 (M,ω), and this is a faithful representation of
the Poisson algebra. If Q = Rn, then this map is

P
(
qk
)

= i~∂pk
+ qk

P (pl) = −i~∂ql
This quantization is apparently equivalent to the Schrödinger quantization/representation,
but only acting on functions of q alone. Note that (Q5) fails, because ∂pk

commutes with all
P
(
qk
)

and P (pl). Also, it fails to produce the second order operators associated to quadratic
observables in {pl}, such as kinetic energy. How would we fix this problem? GQ can remedy
this, but unfortunately that means that the appropriate P (p2) does not act merely on the
space of functions that depends on the coordinates alone. It changes the representation space
(or, the polarization). To associate an operator to p2, one must compensate for the change
in polarization caused by the flow of p2. This is an analytically difficult procedure based
on BKS (Blattner-Kostant-Sternberg) kernels. The understa nding of this is now somewhat
incomplete.

Another problem with this quantization is that θ could be replaced by θ + dF with F a
function on M . This can be described as conjugating by the phase factor e−iF/~ in L2 (M,ω),
so the resulting representations are unitarily equivalent. Since the F is only determined up
to a constant, there is a phase ambiguity in the prequantum phase functions. So this suggests
that instead of functions we should use sections of a line bundle.

What you look for is a connection D on a line bundle L ≈ M × C that in a particular
trivialization looks like

D = d− i

~
θ,

where θ is the canonical one-form on the cotangent bundle M = T ∗Q. Then we would want
our prequantum operator P (f) to look like

P (f) = −i~DXf
+ f.

Another way to look at P (f) is as follows. Let

Lf = θ (Xf )− f

= pk
∂f

∂pk
− f

be the Lagrangian of f . Then

P (f) = −i~Xf − Lf

= −i~ d
dt

(
Φ̂f
t ψ
)∣∣∣

t=0
,

where (
Φ̂f
t ψ
)

(m) = ψ
(

Φf
t (m)

)
exp

(
− i
~

∫ t

0

Lf
(

Φf
t′ (m)

)
dt′
)
,
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where Φf
t′ is the Hamiltonian flow, ψ is a section of L.

This eventually leads to the following definition. Note that the curvature Ω of L is defined
by

Ω (X, Y ) = i
(
[DX , DY ]−D[X,Y ]

)
Ω = iD2 =

1

~
dθ =

1

~
ω

Definition 4.1. A prequantization of a symplectic manifold (M,ω) is a pair (L,D), where
L is a complex Hermitian line bundle over M and D is a compatible connection with curvature
1
~ω. The prequantum Hilbert space is the completion of the space of smooth sections of
L in L2 (M,L), where the L2 metric is defined with respect to the Liouville measure ωn on
M and Hermitian structure on the fibers.

Important Note: We can do this only if ω satisfies the Bohr-Sommerfeld condition,
namely that 1

2π~ω defines an integral cohomology class. Topologically, line bundles are
classified by the first Chern class c1 (L) ∈ H2 (M, 2πZ). In de Rham cohomology, this is
represented by the curvature of any connection on L. This condition is both necessary and
sufficient for the prequantization to work. In that case, we call (M,ω) quantizable. Another
way to state the condition is that the integral∫

S

1

2π~
ω

is an integer, for any choice of closed,oriented 2-dimensional submanifold S of M .
Note that if ω is exact (eg M = T ∗Q), then the condition is clearly satisfied, and since

the cohomology class is trivial, L is also trivial. Sometimes, if (M,ω) is not quantizable, one
may rescale the symplectic form in some way to make the condition work.

How would we classify prequantizations of a quantizable symplectic manifold (M,ω)? We
will say that two prequantizations (L,D) and (L′, D′) are equivalent if there exists a bundle
isomorphism F : L → L′ such that F ∗D′ = D. Note that if (L,D) is a prequantization,
then (L⊗ L0, D ⊗D0) is also a prequantization, for any flat line bundle (L0, D0), because
the curvature of a tensor product is the sum of the curvatures. Conversely, it turns out that
if (L,D) and (L′, D′) are equivalent, then

(L′, D′) ∼ (L′, D′)⊗ (L,D)⊗ (L∗, D∗)

∼ (L,D)⊗ [(L′, D′)⊗ (L∗, D∗)] ,

and [(L′, D′)⊗ (L∗, D∗)] is flat. Thus the classification of prequantizations amounts to the
classification of flat line bundles (and is, in fact, independent of ω). And this is standard: the
isomorphism classes of flat line bundles over M is in one-to-one correspondence with elements
of H1 (M,U (1)), or Hom (π1 (M) , U (1)). Note that the freedom of choosing (L,D) comes
in two varieties. First, one may fix a certain line bundle and may look at the space of
nonequivalent flat connections on it. This space is parametrized by

H1 (M,R)�H1 (M,Z) ∼ U (1)b1(M) ,

where b1 (M) = dimH1 (M,R) is the first Betti number. In other words, D and D +
α are inequivalent if and only if α is neither integral nor exact. Second, one may look
at topologically inequivalent line bundles, which are classified by the first Chern class in
H2 (M,Z).
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5. Polarizations

The problem with the prequantization is that it is too big, and we need to cut down the
space of sections in some way.

Definition 5.1. A polarization of (M,ω) is a smooth distribution of the complexified
tangent space TCM , in other words a smooth choice of subspace of TC,xM at each x ∈ M ,
such that

(1) Px is Lagrangian (maximally isotropic) for each x ∈M . Recall: this means i (vx)ωC =
0 for all vx ∈ Px, and there is no larger subspace that has this property and contains
Px. In particular, this means that the dimension of Px is half the dimension of M .

(2) P is integrable, meaning that [Γ (P ) ,Γ (P )] ⊂ Γ (P ).

The simplest kind of polarization is called a real polarization, where P is the complex-
ification of a distribution P ′ ⊂ TM that is involutive and thus is the tangent bundle of a
Lagrangian foliation of M . If M = T ∗Q, the vertical vectors produce a real polarization.

One then completes the quantization procedure by restricting to sections of L that are
covariantly constant in the P directions. In the real quantization case, these are the basic
sections of L with respect to the Lagrangian foliation of M .
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