A geometric glance at zeta functions, L-functions, and
automorphic forms

(Ken Richardson)

Example: the Riemann zeta function
Consider the Riemann zeta function
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a formula which is valid on the open half-plaRe(s) > 1; it converges absolutely and
uniformly on compact subsets of this half-plane. Note that
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and the numbers?, n € 7, are precisely the eigenvalues/of- —5*722 corresponding to

eigenfunctiong™, 0 € R /27/. Thus, these numbers are the eigenvaluesn? of the
LaplacianA on the Hilbert space df? functions on the unit circle. Consider each individual
term(n?) °. We have the following formula.
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Proof Using the substitution = At, we have
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Thus, we have
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by Tonelli's theorem. We have just shown that

20(25) = % j: sl (Z exp(—n2t) )dt.
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The heat operator
The functionK(t) = Zn&/ exp(—n?t) is the trace of the heat operator on the circle. The
heat operator is the operatér : L?(S') - L?(S') that depends onthat satisfies

Kt(ein(}) = g n’tgind — (exp(—tA))e”‘O.

Itis clear that its trace iin@/ exp(—n?t), but why isK; called the heat operator? In physical



terms, the operator inputs a temperature function on ticéecand the output is the
temperature at timg as governed by the heat equation. On a Riemannian manifoilde
heat equation for an unknown functiorx, t) with t > O (time) andx € M (position)

(Ot + A)u(x,t) = 0,
and the initial value problem for the heat equation is
(Ot + A)u(x,t) = 0,
u(x,0) = f(x),

and you can think of(x) as the initial temperature distribution angk, t) the temperature at
timet. The heat operatdf; satisfies

(Ot + A)(Ke(F)(x)) = O,
M(r)w Ki(F)(x) = f(x).

Note that if we take the special casef@f) = €, thenu(d,t) = e "el™ satisfies the initial
value problem for the heat equation on the circle:
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There is a formula for the heat operator. This formula ineslthe heat kernél(t,x,y), with
t > 0, x,y € M. One may think of this as the amount of heat at tiraépositionx, if at time 0
a delta-function heat distribution covers the manifoldhvgingularity aty (that is, if all the
heat is concentrated at the poifit Anyway, the formula is

ux t) = Ki(F(x) = jM K(t, %, y)f(y) dvoly ,
andK(t,x,y) satisfies the formula
(Ot + AK(t,x,y) = 0,
IMmKExy) = (),

whered(x,y) is the Dirac delta distribution. Under fairly weak assurop$ (eg Ricci
curvature bounded from below by a negative constantdig,y) - 0 asx - «), the kernel
K(t,x y) is unique. IfM is Euclidean spacg", K(t,x,y) is given by

_ 1 x—yI?
K(t,X, y) = W eXp(-T).

If we let {1} be the eigenvalues of the Laplaciamnd{¢, } the corresponding
L2-orthonormal basis of eigenfunctions, we have the follgfiormula forK(t, x,y) that can
be easily verified:

K(t,xy) = Zexp(—txwa(x)W,

where in the formula the eigenvalues are repeated accotalimgltiplicities. Note that the



sum converges absolutely for- 0 (and uniformly ifM is compact). Note that the trace of the
heat operator is

Tr(Ky) = _[M K(t,x,x) dvoly
= ) exp(-tA).
A

The heat kernel on a general Riemannian manifold diffensfiteat on Euclidean space,
but for small timet > 0, the two are similar. In fact, the following asymptotic fasta for the
heat kernel on a compact manifdilwas shown by Minakshisundaram and Pleijel in 1949:

Theorem (Minakshisundaram and Pleijel, 1949) For every posititegerk,
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K(t,xy) = )™ exp( It (Uo(X,Y) + tui(X,y) + t°uz(X,Y) +...+tuk(X,y) + O(t)),
wherer is the distance betweerandy in M, and eachu(x,y) is a smooth function of

X,y that only depends on the metric and its covariant derivataleng the minimal
geodesic connectingandy. (It is assumed thatis not in the cut locus of, so that there
is a unique minimal geodesic.) Furthag(x, x) = 1.

One may actually solve for the coefficient functiangx,y) by plugging the asymptotic
formula into the heat equation. From this formula, one majude the following asymptotic
formula for the trace of the heat operator:

Tr(Ky) = Zexp(—t/’L) = a %)nlz (VOI(M) +tU1 +t2U; +...+tkUy + O(tk1)),
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where eaclv; is an integral of a local quantity dependent on the metriciesncbvariant
derivatives. Moreover, these quantities may be writtereims of curvatures; for instance,

_ 1
Uy =1 jMRdvol,

whereR is the scalar curvature. In the case of the unit circle, thefda takes the form

Tr(Ky) =1+ Ziexp(—tnz) = (4ﬂ%)1/2 (2r + O(t<1))
n=1
_ AT .
= G + O(t%)

for everyx = k+ % > 0. The local formula foiK(t,61,0,) is

K(t,01,02) = 2—1n > ettt — 2—1n +-L 3" etcogn(6; - 62))
ne’ n=1
01— 02)?
- (47:[-)1/2 exp(—( 1—4t 2) )(1+ O(t1)).

In the particular case where there is a Riemannian covNinpg M, we have the formula

KM(t!X! y) - Z KN(t!?’/yy)’
14



wherex € p~*(x), ¥ € p~*(y), and the sum is over all deck transformationdhe reason
this formula works is that the local expressions for the hajgin ofN and ofM are the same,
and both sides satisfy the initial value problemMnThe right hand side turns out to be
equivariant with respect to the deck transformations, Wwhie isometries. If one thinks about
initial heat distributions, the formulas make sense. Tégat the initial temperature
distribution onM is a delta function a, this is equivalent to an initial temperature
distribution onN that is the sum of delta functions at each poinpdf(y).

A particular case of the formula above is again on the uniteinhereRk — St is the
covering map. The deck transformations are additions ofiphes of 2z. We have

- 01— 0, —2zm)|?
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n=1 me/

Letting 01 = 0, we have

K(t,0,0) = 2—1n > et

neZ
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This formula is also known as the Jacobi transformation tdanfor the theta function. Note
that whent = 7, both sides of the equation are identical.
Functional equation and analytic continuation of the zeta
function

We now apply the heat kernel information to the Riemann aatatfon(. For
Re(s) > &,

20(2s) = Y (n?)~®

n+0

- % -[o\‘ ts-1 (Z exp(-n?t) - 1 )dt

ne’Z

% [ ey -1)d

= r(s) j t1 (27K (t,0,0) - 1 )t

- (J_ > exp( -2 ) - 1>dt.

With this in mind, we have the following:



20(2s) = Tls) j :tﬂ(Tr(Kt)—l)dt - Tls) j O t}l(% - 1>dt

1 s \/_ s —n?
+@j t 1(Tr(Kt)_T>dt+ S t 1(22e t)dt

Letting Tr(K;) = %Zmez exp(—Z12 ) andt = £ in the second integral artd= zu in the
third integral, we obtain
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Thus, we have

&(s) == nI'(s)20(2s)

satisfies the functional equation
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Also, observe that the latter formula gives a well-defineahrfula fors(s) that is analytic
except with simple poles at= 0 ands = % Thus, the formula also gives the analytic
continuation formula fot (s) via

£(s) - 2r< 5( )-

Note that the standard functional equation for the Riemata finction is equivalent to ours
above. The key ingredient needed to produce the functiapadten is the fact about heat
kernels for the cover — S'. But there is a more general approach that yields the analyti
continuation in more generality.

Next time:



Analytic continuation for more general zeta functions

Comparing zeta functions of number theory to geometric zeta
functions
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