
1. What is the eta invariant?

The eta invariant was introduced in the famous paper of Atiyah,
Patodi, and Singer (see [1]), in order to produce an index theorem
for manifolds with boundary. The eta invariant of a linear self-adjoint
operator is roughly the difference between the number of positive eigen-
values and the number of negative eigenvalues. One problem with this
idea is that it does not make sense in infinite dimensions. However, we
will have a way of regularizing to make this quantity well-defined for
differential operators; this is similar to the zeta-function regularization
of the determinant of the Laplacian and methods used by physicists to
regularize quantities that are computed using divergent integrals. In
fact, just as the zeta function of elliptic operators is analogous to the
Riemann zeta function, the eta function is analogous to Dirichlet L-
functions. Assume that we know the eigenvalues {λ}with multiplicity
of a(n essentially) self-adjoint (usually first order) differential operator
D : C∞ (E) → C∞ (E) on sections of a vector bundle E → M , where
M is a closed Riemannian manifold. We define the eta function η (s)
to be

η (s) =
∑
λ

sgn (λ) |λ|−s ,

where we define sgn (0) = 0. It turns out that the eta function is
holomorphic in s for large Re (s), if D is elliptic; we will discuss this
later. This is the zeta function if D has nonnegative eigenvalues. The
eta invariant is

η (0) ,

which means that we analytically continue to s = 0. We see that
this quantity is formally the number of positive eigenvalues minus the
number of negative eigenvalues, ∞−∞. Note that there is no reason
to expect that this number is defined (ie η (s) is regular at s = 0; it
turns out that it often is) or that it is an integer (often it is not).

Remark: we can define these for pseudodifferential operators as
well.

Boring example: Let D = 1
i
d
dθ

, a differential operator acting
on complex-valued functions on the circle. (In the notation above,
M = S1, E = M × C.) We remark that this is the most elementary
example of a Dirac operator. We will now compute the eta invariant
of this operator. Observe that the eigensections of this operator are
the functions einθ corresponding to eigenvalue n ∈ Z, and in fact these
eigenfunctions form an orthogonal basis of L2 (S1). Therefore, the eta
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function is

η (s) =
∑
λ

sgn (λ) |λ|−s

=
∑
n∈Z

sgn (n) |n|−s =
∑
n∈Z>0

n−s −
∑
n∈Z>0

n−s = 0.

Note that the sum above converges absolutely for Res > 1, so the
calculation is valid. Analytically continuing the function η (s) = 0 to
s = 0, we obtain η (0) = 0.

Ostensibly less boring but just as boring example: Let D =
1
i
d
dθ

+ 1
2

on complex-valued functions on the circle. Then

η (s) =
∑
λ

sgn (λ) |λ|−s

=
∑
n∈Z

sgn

(
n+

1

2

) ∣∣∣∣n+
1

2

∣∣∣∣−s
=

∑
n∈Z≥0

(
n+

1

2

)−s
−
∑
n∈Z≥0

(
n+

1

2

)−s
= 0,

so again η (0) = 0.
Finally, a non-boring example: Let D = 1

i
d
dθ

+ c on complex-
valued functions on the circle, where c is a real constant. Then

η (s) =
∑
λ

sgn (λ) |λ|−s

=
∑
n∈Z

sgn (n+ c) |n+ c|−s =
∑
n>−c

(n+ c)−s −
∑
n<−c

(n+ c)−s ,

which is nonzero in general. But now what do we do to obtain η (0),
or to obtain a closed-form expression for η (s)?

2. Families of Operators

Proposition 1. Let Qu be a C∞ family of nonnegative self-adjoint op-
erators with a complete system of eigenvalues λu for which the eigen-
functions form a basis for L2, such that ζ (s) is defined and analytic at
s = 0 and that there is a constant N > 0 such that ζu (s) = Tr (Q−s) =∑

λu
λ−su converges absolutely for s > N , and so that zero eigenspace

depends differentiably on u (and thus is of constant dimension). Then
the zeta function corresponding to Qu satisfies

d

du
ζu (s) = −s Tr

(
Q̇uQ

−s−1
u

)
.
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Proof. For a simple proof, if one may assume that the eigenvalues may
be chosen to be differentiable in u (as in Rellich’s Theorem), then one
proves it like this:

d

du
ζu (s) = −s

∑
λ−s−1
u λ̇u = −s Tr

(
Q̇Q−s−1

)
for large s, and then by the identity theorem, the analytic continuation
satisfies the same equation. To prove it really using the ideas of Seeley,
note that

ζu (s) =
1

2πi
Tr

∫
Γ

λ−s (Qu − λ)−1 dλ

for some contour Γ enclosing the real axis. For large Res, convergence
is guaranteed by estimates in [4]. Next we differentiate

(Qu − λ)−1 (Qu − λ) = I

to get

d

du
(Qu − λ)−1 = − (Qu − λ)−1 Q̇u (Qu − λ)−1 .

Then

d

du
ζu (s) = − 1

2πi
Tr

∫
Γ

λ−s (Qu − λ)−1 Q̇u (Qu − λ)−1 dλ.

If it happened that Qu is of very large order, (Qu − λ)−1 is trace class
and has a continuous Schwarz kernel, and we may interchange trace
with integral and commute operators within the trace. Then

d

du
ζu (s) = − 1

2πi

∫
Γ

λ−sTr
(
Q̇u (Qu − λ)−2

)
dλ

= .− 1

2πi
Tr

(
Q̇u

∫
Γ

λ−s (Qu − λ)−2 dλ

)
= − 1

2πi
Tr

(
Q̇u

∫
Γ

sλ−s−1 (Qu − λ)−1 dλ

)
(parts)

= −sTr
(
Q̇uQ

−s−1
u

)
.
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But what if Qu is not of large order. Then if m >> 0 we still have Qm
u

satisfies the above, and

d

du
ζu (ms) = −sTr

(
d

du
(Qu)

mQ−ms−mu

)
= −s

∑
j

Tr
(
Qj
uQ̇uQ

m−j−1
u Q−ms−mu

)
= −s

∑
j

Tr
(
Q̇uQ

−ms−1
u

)
= −msTr

(
Q̇uQ

−ms−1
u

)
,

assuming one can commute the operators around in the trace, and thus
the theorem is done. To carefully commute the operators in the trace,
we see that if m is large enough

Tr
(
Qj
uQ̇uQ

m−j−1
u Q−ms−mu

)
= Tr

(
Qj
uQ̇uQ

−ms−j−1
u

)
= Tr

(
Qj
uQ̇uQ

−ms/2
u Q−ms/2−j−1

u

)
= Tr

(
Q−ms/2−j−1
u Qj

uQ̇uQ
−ms/2
u

)
= Tr

(
Q−ms/2−1
u Q̇uQ

−ms/2
u

)
= Tr

(
Q̇uQ

−ms/2
u Q−ms/2−1

u

)
= Tr

(
Q̇uQ

−ms−1
u

)
.

�

Proposition 2. Let D any self-adjoint operator for which η (s) is de-
fined and analytic at s = 0, and that there is a constant B > 0 such that∑

λ sgn (λ+ c) |λ+ c|−s and
∑

λ

(
(λ+ c)2)− s+1

2 converge absolutely for
s > B and c in a certain interval such that −c is not an eigenvalue of
D for all c in that interval. Then the eta function ηc (s) corresponding
to the operator D + c satisfies

d

dc
ηc (s) = −sζ(D+c)2

(
s+ 1

2

)
,

where ζ(D+c)2 is the zeta function corresponding to the nonnegative op-

erator (D + c)2, that is

ζ(D+c)2 (s) =
∑
µ>0

µ−s,
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where the sum is over all eigenvalues of the operator (D + c)2. In par-
ticular, if D is a first-order elliptic essentially self-adjoint differential
operator, then d

dc
ηc (0) is the residue of the simple pole of the meromor-

phic function ζ(D+c)2
(
s+1

2

)
at s = 0.

Remark: It is known that second-order essentially self-adjoint el-
liptic differential operators on a manifold of dimension n yield zeta
functions with at most simple poles, and they are located at s = n

2
,

s = n
2
− 1, s = n

2
− 2, ... for n odd and at s = n

2
, s = n

2
− 1, ... , s = 1

for n even. Further, the residues at these poles are given by explicitly
computable integrals of locally-defined functions.

Proof. We know that for each eigenvalue λ of D, sgn (λ+ c) does not
vary with c in the interval. Then

ηc (s) =
∑
λ

sgn (λ+ c)
(
(λ+ c)2)−s/2

d

dc
ηc (s) =

∑
λ

sgn (λ+ c)
(
−s

2

(
(λ+ c)2)−s/2−1

)
2 (λ+ c)

= −s
∑
λ

sgn (λ+ c) |λ+ c|−s−2 (λ+ c)

= −s
∑
λ

|λ+ c|−s−1

= −s
∑
λ

(
(λ+ c)2)− s+1

2

= −sζ(D+c)2

(
s+ 1

2

)
·

Since both sides are analytic in s for large Res, the statement must
remain true after analytic continuation. �

Proposition 3. (More general version of the last proposition) For c
in an open interval in R, let Dc be a smooth family of self-adjoint
operators for which ηc (s) = ηDc (s) is defined and analytic at s = 0 for
all c, and that there is a constant B > 0 such that

∑
λc
sgn (λc) |λc|−s

and
∑

λ

(
(λc)

2)− s+1
2 converge absolutely for s > B and c in the interval,

such that dim kerDc is constant in c. Then the eta function ηc (s)
satisfies

d

dc
ηc (s) = −sTr

(
Ḋc

(
(Dc)

2)− s+1
2

)
.
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In particular, if Dc is a family of first-order elliptic essentially self-
adjoint differential operator, then d

dc
ηc (0) is the residue of the simple

pole of the meromorphic function Tr

(
Ḋc

(
(Dc)

2)− s+1
2

)
at s = 0.

Proof. We know that for each eigenvalue λ of D, sgn (λc) does not vary
with c in the interval. By the work of Rellich, we may assume that λc
is differentiable in c. Then, for large Res,

ηc (s) =
∑
λc

sgn (λc)
(
(λc)

2)−s/2
d

dc
ηc (s) =

∑
λc

sgn (λc)
(
−s

2

(
(λc)

2)−s/2−1
)

2λc
d

dc
λc

= −s
∑
λc

sgn (λc) |λc|−s−2 λc
d

dc
λc

= −s
∑
λc 6=0

λc
|λc|
|λc|−s−2 λc

d

dc
λc

= −s
∑
λc 6=0

|λc|1 |λc|−s−2 d

dc
λc

= −s
∑
λc 6=0

|λc|−s−1 d

dc
λc

= −s
∑
λ

(
λ2
c

)− s+1
2

d

dc
λc

= −sTr
(
Ḋc

(
(Dc)

2)− s+1
2

)
Since both sides are analytic in s, the statement must be true for all

s. Again, this is ust the wimpy version of the proof; one needs to use
the resolvent for a rigorous proof that does not require big hammers
such as the Rellich theorem. �

Remark 4. Until this moment we have always assumed that the varia-
tion does not change the quantity sgn (λc). However, we note that one
may exactly account for what happens to ηc (s) as c varies in such a
way that an eigenvalue goes through zero. That is, if λ′ is the offend-
ing eigenvalue such that λ′c passes through zero when c = c0, we may
instead consider the operator Dc + εP , where P is the projection to the
eigenspace corresponding to eigenvalue λc of Dc. It turns out that P
can be written entirely in terms of powers of Dc and is thus a classi-
cal pseudodifferential operator as well. If ε is chosen to be sufficiently



7

small to eliminate the difficulty at c0. Further, observe that

ηDc+εP (s) = ηc (s) + sgn (λc + ε) (λc + ε)−s − sgn (λc) (λc)
−s ,

and upon analytic continuation we see that ηDc+εP (0) = ηc (0) ± 1.
Thus, with no assumptions on passing through eigenvalues, ηc (0) mod1
is differentiable in c, and ηc (0) may be calculated precisely by deter-
mining how many eigenvalues pass zero. The same holds for the zeta
function.

3. The Heat Kernel and Zeta Function

Now we collect some facts about the heat kernel and zeta functions.
Let L be amth order, nonnegative elliptic (classical pseudo-)differential

operator on sections of a vector bundle E a closed Riemannian man-
ifold M of dimension n whose principal symbol is the same as the m

2

power of the Laplacian, ie ∆m/2. Then the Cauchy problem for the
heat equation has a unique solution among solutions that grow less
than et

2
in t:

Problem:

(
∂

∂t
+ L

)
u (x, t) = 0; u (x, 0) = f (x)

Solution: u (x, t) =

∫
M

K (t, x, y) f (y) dV (y) ,

where K (t, x, y) ∈ Hom (Ey, Ex) is the heat kernel of L. The operator
K satisfies the following asymptotic formula, for each k ∈ Z≥0, as
t→ 0:

K (t, x, y) =
1

(4πt)n/m
e−d(x,y)2/4t

(
c0 (x, y) + c1 (x, y) t1/m+
...+ ck (x, y) tk/m +O

(
t(k+1)/m

) ) ,
where d (x, y) is the Riemannian distance from x to y, and each cj
is smooth on M × M , and cj (x, y) ∈ Hom (Ey, Ex). In Eudlidean
space, E is the trivial line bundle, d (x, y) = |x− y|, c0 (x, y) = 1, and
cj (x, y) = 0 for each j > 0. Plugging in y = x, we obtain, as t→ 0,

K (t, x, x) =
1

(4πt)n/m

(
c0 (x, x) + c1 (x, x) t1/m+
...+ ck (x, x) tk/m +O

(
t(k+1)/m

) ) .
In the differential case, the coefficients cj (x, y) can be calculated by di-
rectly plugging the asymptotic expansion into the differential equation
and solving for them. They depend only on the metric and symbol of
the operator along the minimal geodesic connecting x and y. Note that
in order that K (t, x, y) satisfies the initial condition, it must be true
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that c0 (x, x) = 1. Note that if e−tL is the operator that maps f (x) to
u (t, x), then

Tr
(
e−tL

)
=

∫
M

Tr (K (t, x, x)) dV (x) .

Under the additional assumption that L is an essentially self-adjoint
(classical pseudo-)differential operator, then we may choose an or-
thonormal basis of L2 (E) consisting of eigensections αk of L corre-
sponding to eigenvalues λk (counted with multiplicity), and we have

K (t, x, y) =
∑

e−tλkαk (x)⊗ αk (y)∗ ,

T r
(
e−tL

)
=

∫
M

Tr (K (t, x, x)) dV (x) =
∑

e−tλk ,

T r
(
e−tL

)
=

1

(4πt)n/m
(
c0 + c1t

1/m + ...+ ckt
k +O

(
tk+1

))
+ dim ker (L)

and each sum absolutely and uniformly converges at each t > 0. Here,
cj =

∫
M
Tr (cj (x, x)) dV .

Next, the zeta function of a nonnegative self-adjoint elliptic differ-
ential operator L is defined in analogy to the Riemann zeta function
as

ζL (s) =
∑
λk 6=0

λ−sk .

Note that in the case of the Laplacian L = − d2

dθ2
on complex-valued

functions on the circle, which has eigenvalues n2 corresponding to or-
thogonal eigenfunctions e±inθ, we have

ζL (s) =
∑
n>0

2n−2s = 2ζR (2s) ,

where ζR (s) is the Riemann zeta function. Note that

λ−s =
1

Γ (s)

∫ ∞
0

ts−1e−tλdt,
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so we have that

ζL (s) =
∑
λk 6=0

λ−sk =
1

Γ (s)

∫ ∞
0

ts−1

(∑
λk 6=0

e−tλk

)
dt

=
1

Γ (s)

∫ ∞
0

ts−1

(∫
M

Tr (K (t, x, x)) dV (x)− dim kerL

)
dt

=
1

Γ (s)

∫ 1

0

ts−1

(∫
M

Tr (K (t, x, x)) dV (x)− dim kerL

)
dt

+
1

Γ (s)

∫ ∞
1

ts−1

(∫
M

Tr (K (t, x, x)) dV (x)− dim kerL

)
dt

=
1

Γ (s)

∫ 1

0

ts−1

(
1

(4πt)n/m
(
c0 + c1t

1/m + ...+ cN t
N/m

))
dt

+
1

Γ (s)

∫ 1

0

ts−1

(∑
e−tλk − dim kerL

− 1

(4πt)n/m
(
c0 + c1t

1/m + ...+ cN t
N/m

))
dt

+
1

Γ (s)

∫ ∞
1

ts−1
(∑

e−tλk − dim kerL
)
dt

=
1

(4π)n/m Γ (s)

N∑
j=0

cj

∫ 1

0

ts−1− n
m

+ j
mdt+ φN (s)

=
1

(4π)n/m Γ (s)

N∑
j=0

cj

s− n
m

+ j
m

+ φN (s)

for large s, and this formula gives the meromorphic continuation of
the zeta function ζL (s) (with φN (s) holomorphic for Res > n

2
− N).

Observe that, as stated earlier, in the differential case, ζL (s) has at
most simple poles, and they are located at s = n

2
, s = n

2
−1, s = n

2
−2,

... for n odd and at s = n
2
, s = n

2
− 1, ... , s = 1 for n even (note that

1
Γ(s)

has a simple zero at each nonpositive integer). The residue of the

pole at s = n
m
− j

m
is

cj

(4π)n/mΓ( nm−
j
m)

.

We remark that many pseudodifferential operators have the same
properties regarding the analytic continuation. For instance, if A is
a self-adjoint differential operator and p is any positive real number,
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then |A|p = (A2)
p/2

is a pseudodifferential operator, and

ζ|A|p (s) =
∑
λ6=0

|λ|−ps =
∑
λ6=0

(
λ2
)−ps/2

= ζA2

(ps
2

)
,

and its analytic continuation and poles can be obtained from those
of ζA2 . In particular, ζ|A|p (0) = ζA2 (0), and ζ ′|A|p (0) = p

2
ζ ′A2 (0). In

general, the asymptotic expansions of heat kernels corresponding to
pseudodifferential operators may have powers of t that increment by
1
2
, and in addition logarithmic terms may appear. The logarithmic

terms cause the corresponding zeta functions to have poles of higher
order. According Seeley’s paper [4], for any classical pseudodifferential
operator A on a closed manifold M , the the restriction of the kernel
of A−s to the diagonal in M ×M is meromorphic with poles only at
s = n−k

m
, k = 0, 1, 2, ... (where m is the order of the operator, n is the

dimension of M), and the pole s = k−n
m

, and its residue is given by
an explicit formula. The residues at s = 0,−1,−2, ... vanish, and the
value of the kernel at s = 0 is again given by an explicit formula.

Explicitly, note that Γ (s) has a simple pole at s = 0 with residue 1.
From this we see from the formula above that

ζL (0) =
cn

(4π)n/m
,

and

cn/m =

∫
cn/m (x, x)

is explicitly calculable from the metric and the local symbol of the
operator, in the differential case.

Now we may return to the Nonboring Example: Now we apply
the Proposition to the operator D + c = 1

i
d
dθ

+ c on the circle. By the
first proposition, we have that

d

dc
ηc (s) = −sζ(D+c)2

(
s+ 1

2

)
,

so that d
dc
ηc (0) is −2 times the residue of ζ(D+c)2 (z) at z = 1

2
. But note

that (D + c)2 has the same principal symbol as the Laplacian, and thus
its heat kernel satisfies

Tr
(
e−t(D+c)2

)
=

1√
4πt

( ∫ 2π

0
c0 (x, x) dθ + t

∫ 2π

0
c1 (x, x) dθ+

...+ tN
∫ 2π

0
cN (x, x) dθ +O

(
tN+1

) )
=

1√
4πt

(
2π + tc1 + ...+ tNcN +O

(
tN+1

))
.
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Then

ζ(D+c)2 (s) =
1

(4π)1/2 Γ (s)

2π(
s− 1

2

)
+

1

(4π)1/2 Γ (s)

N∑
j=1

cj
s− 1

2
+ j

+ holomorphic (s) ,

so the residue is 2π

2
√
πΓ( 1

2)
= 1. Thus, near s = 0

−sζ(D+c)2

(
s+ 1

2

)
= − s

s+1
2
− 1

2

= −2, so

d

dc
ηc (0) = −2.

Since when c = 1
2
, ηc (0) = 0, we have that

ηc (0) = −2

(
c− 1

2

)
= 1− 2c

for 0 < c < 1. Note that the spectrum is invariant as c 7→ c + 1, so in
fact

ηc (0) = −2

(
c− 1

2

)
= (1− 2c) mod2Z, c ∈ R \ Z

We have seen that
ηc (0) = 0, c ∈ Z.

4. Relationship between zeta and eta

According to Seeley’s famous paper [1], complex powers of pseudo-
differential operators are again pseudodifferential. Thus, if A is a first
order self-adjoint elliptic pseudo-differential operator, then

B1 :=
3

2
|A|+ 1

2
A,B2 :=

3

2
|A| − 1

2
A

are also elliptic and pseudodifferential but are nonnegative. Let ζj (s)
be the zeta function corresponding to Bj for j = 1, 2. Then if λ ranges
over eigenvalues of A,

ζ1 (s)− ζ2 (s) =
∑
λ 6=0

(
3

2
|λ|+ 1

2
λ

)−s
−
∑
λ 6=0

(
3

2
|λ| − 1

2
λ

)−s
= 2−s

∑
λ>0

λ−s +
∑
λ<0

|λ|−s −
∑
λ>0

λ−s − 2−s
∑
λ<0

|λ|−s

=
(
2−s − 1

)∑
λ 6=0

sgn (λ) |λ|−s =
(
2−s − 1

)
ηA (s) .
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Thus,

ηA (s) =
ζ1 (s)− ζ2 (s)

2−s − 1
.

This gives the meromorphic continuation of the eta function. If each
ζj has only simple poles and is regular at s = 0 (as it is for powers of
self-adjoint elliptic differential operators), then ηA (s) has only simple
poles (including possibly at s = 0). The residue of ηA (s) at s = 0 is

R (A) = − 1

log 2
(ζ1 (0)− ζ2 (0)) .

We need to show that R (A) is in fact zero, and as a consequence we
will be able to deduce that ηA (s) is regular at s = 0. Note that by the
formula for ζL (0) above, R (A) is an integral of a locally determined
quantity on the manifold.

5. Regularity of η (s) at s = 0

The next step is to show that R (A) is constant on a family of oper-
ators Au. In order to allow for discontinuities produced by zero eigen-
values, we can write ηu (s) = η′u (s) + η′′u (s) as a sum of two parts,
η′u (s) corresponding to the eigenvalues λ such that |λ| < C and η′′u (s)
corresponding to eigenvalues λ such that |λ| > C, where C is interior
to a spectral gap for |A|. The function η′u (s) is a finite sum of expo-
nential function and is thus entire and also differentiable in u. Thus,
if we let ηu (s) denote ηu (s) modZ, we see that ηu (0) = η′′u (0). Thus,
we may set assume change all eigenvalues λ of Au such that |λ| < C
to 1 without changing ηu (0); this means that we may assume Au is
invertible for all u.

To proveR (A) is constant on such a family of operators Au, it suffices
to show that for such a family Au, η̇0 (0) = 0. Let Bu = |A0| + uȦ0,
which is elliptic and positive for small u. Then by the propositions
above,

d

du
ηAu (s) = −sTr

(
Ȧu
(
(Au)

2)− s+1
2

)
= −sTr

(
ȦuB

−s−1
u

)
,

d

du
ζBu (s) = −s Tr

(
ḂuB

−s−1
u

)
= −s Tr

(
Ȧ0B

−s−1
u

)
so that these derivatives coincide at u = 0. By the above, d

du
ζBu (s)

has a meromorphic continuation which is regular at s = 0, so the same
must be true for d

du
ηAu (s). By the above relationship between ζ and

η, and the meromorphic continuation formula for ζL (s), we have (with
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ζ1, ζ2 corresponding to 3
2
|Au|+ 1

2
Au,

3
2
|Au|− 1

2
Au) that ηAu (s) is of the

form

ηAu (s) =
ζ1 (s)− ζ2 (s)

2−s − 1

=
R (Au)

s
+

k∑
j=−n,6=0

aj (u)

s− j
m

+ φk (s, u) ,

where φk (s, u) is a smooth map into the space of holomorphic functions
on Res > − k

m
. But then the residue of d

du

∣∣
u=0

ηAu (s) at s = 0 is then
d
du
R (Au), which must be zero by the latest calculations. Thus, R (Au)

is constant in u. Thus R (A) is a homotopy invariant of A.
By the comments at the beginning of this section, if ηAu (s) is the

eta function reduced modulo Z, then d
du

∣∣
u=0

ηAu (s) is holomorphic at
s = 0, and its value there is given by an explicit integral formula
constructed out of the complete symbols of A0 and Ȧ0.

5.1. Aside: a homotopy invariant for operators twisted by flat
bundles. A consequence of the above for flat bundles is as follows.
Let α : π1 (M) → U (N) be a unitary representation, and this de-

fines a flat vector bundle M̃ ×a Vα over M with Hermitian metric.
If A : C∞ (M,E) → C∞ (M,E) is a differential operator acting on
sections of E, then A extends naturally to Aα : C∞ (M,E ⊗ Vα) →
C∞ (M,E ⊗ Vα). Moreover, if A is self-adjoint, then Aα is also self-
adjoint. Let

η̃α (s, A) := ηAα (s)−NηA (s) .

Since the operators Aα and AN = A ⊕ ... ⊕ A (N times) are locally
isomorphic, any invariant given by a local integral formula will coincide
for the two operators. Thus, R (Aα) = R (AN) = NR (A), so that
η̃α (s, A) is regular at s = 0. By the above, d

du

∣∣
u=0

η̃α (s, Au) is zero at
s = 0, so that η̃α (s, A) is a homotopy invariant of A. If A is instead
pseudodifferential, there is no unique way of defining Aα. However,
using a partition of unity, we can construct an operator Aα whose
complete symbol is σ (A)⊗ 1α. We have shown

Proposition 5. (Notation as above) η̃α (0, A) is a finite homotopy in-
variant of A and takes values in R�Z .

5.2. Back to the regularity of the eta function. Reduced eta
invariant: If you replace η by ξ = η+h

2
, where h is the dimension of

the nullspace, all of the results above apply.
K-theory and self-adjoint symbols: Since R (A) is a homotopy

invariant of A (and with adjustment is a actually a stable homotopy
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invariant of the symbol σ (A)), it suffices to check that R (A) = 0 for a
sufficiently rich set of symbols that generate all K-theory classes. You
can either use the Dirac operator or the boundary part of the signature
operator on odd dimensional manifolds. Then, by invariance theory,
the local integrand must be a Pontryagin-Chern form, and thus of even
degree. Then, we have that R (A) = 0 on odd-dimensional manifolds.

Theorem 6. If M is an odd-dimensional manifold, and A is a self-
adjoint elliptic pseudodifferential operator of positive order on M , then
ηA (s) is holomorphic at s = 0.

The even-dimensional case is much trickier, and you can see the proof
in [3].

6. Another meromorphic continuation of the eta
function

If A is an self-adjoint elliptic classical pseudodifferential operator of
order d on a manifold of dimension n, observe that

ηA (s) =
∑
λ

sgn (λ) |λ|−s =
∑
λ 6=0

λ |λ|−s−1 =
∑
λ 6=0

λ
(
λ2
)− s+1

2

=
1

Γ
(
s+1

2

) ∫ ∞
0

t
s+1
2
−1

(∑
λ

λe−tλ
2

)
dt

=
1

Γ
(
s+1

2

) ∫ ∞
0

t
s+1
2
−1Tr

(
Ae−tA

2
)
dt

Now, it turns out that Tr
(
Ae−tA

2
)

has an asymptotic expansion in

powers of t, beginning with t
−n−d

2d , and so the integral gives an analytic
expression for ηA (s) for s+1

2
> −n−d

2d
, i.e. s > −n−2d

d
= −n

d
− 2. If A is

a differential operator, then we have

Tr
(
Ae−t

2A2
)

=
N∑
k=0

ck (A) t
k−n−d

2d +O
(
t
N−n−d+1

2d

)
,

where as in the heat asymptotic expansion, if A is differential, ck (A) =∫
ck (A, x) dV (x), where ck (A, x) is a locally determined quantity.
Thus, the meromorphic continuation of ηA (s) (for differential oper-

ators and classical pseudodifferential operators) is given by
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ηA (s) =
1

Γ
(
s+1

2

) ∫ 1

0

t
s+1
2
−1

(
N∑
k=0

ck (A) t
k−n−d

2d

)
dt

+
1

Γ
(
s+1

2

) ∫ 1

0

t
s+1
2
−1

(
Tr
(
Ae−tA

2
)
−

N∑
k=0

ck (A) t
k−n−d

2d

)
dt

+
1

Γ
(
s+1

2

) ∫ ∞
1

t
s+1
2
−1Tr

(
Ae−tA

2
)
dt

=
1

Γ
(
s+1

2

) N∑
k=0

ck (A)

∫ 1

0

t
1
2
s+ 1

2d
(k−d−n)− 1

2dt+ holomorphic (s)

=
1

Γ
(
s+1

2

) N∑
k=0

ck (A)
1
2
s+ 1

2d
(k − d− n) + 1

2

+ holomorphic (s)

This formula shows that the residue at s = 0 occurs when

0 =
1

2d
(k − d− n) +

1

2
, or

k = 2d

(
− 1

2d
(−d− n)− 1

2

)
= n,

or

ress=0 (ηA (s)) =
2cn (A)

Γ
(

1
2

) .
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