Unitary Equivalence of Normal Matrices over Topological Spaces

GAGA Seminar

Fall 2022

Theorem (Spectral Theorem)

Every normal element of $\mathrm{M}(n, \mathbb{C})$ is diagonalizable; i.e., is unitarily equivalent to a diagonal matrix.

Question

If X is a topological space, is every normal element in $\mathrm{M}(n, C(X))$ diagonalizable? In other words, if $A \in M(n, C(X))$ is normal, does there exist a unitary $U \in M(n, C(X))$ such that $U^{*} A U$ is a diagonal matrix?

Question

If X is a topological space, is every normal element in $\mathrm{M}(n, C(X))$ diagonalizable? In other words, if $A \in M(n, C(X))$ is normal, does there exist a unitary $U \in M(n, C(X))$ such that $U^{*} A U$ is a diagonal matrix?

No in general - R. Kadison gave a counterexample in $\mathrm{M}\left(2, C\left(S^{4}\right)\right)$.

Question

What are the obstructions to a normal element in $\mathrm{M}(n, C(X))$ being diagonalizable?

Question

What are the obstructions to a normal element in $\mathrm{M}(n, C(X))$ being diagonalizable?

Example 1: $A \in \mathrm{M}(2, C[-1,1])$

$$
A(x)= \begin{cases}\left(\begin{array}{ll}
x & x \\
x & x
\end{array}\right) & x \geq 0 \\
\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right) & x<0\end{cases}
$$

If $U^{*} A U$ diagonal, then

$$
\begin{gathered}
U(x)=\left(\begin{array}{rr}
f(x) & g(x) \\
-f(x) & g(x)
\end{array}\right) \quad \text { or }\left(\begin{array}{rr}
g(x) & f(x) \\
g(x) & -f(x)
\end{array}\right), \quad x>0 \\
|f(x)|=|g(x)|=\frac{1}{\sqrt{2}} \\
U(x)=\left(\begin{array}{cc}
h(x) & 0 \\
0 & k(x)
\end{array}\right) \quad \text { or }\left(\begin{array}{cc}
0 & h(x) \\
k(x) & 0
\end{array}\right), \quad x<0 \\
|h(x)|=|k(x)|=1 .
\end{gathered}
$$

A in $\mathrm{M}(n, C(X))$ is multiplicity-free if $A(x)$ has distinct eigenvalues for each x in X.

Equivalently, A is multiplicity-free if its characteristic polynomial $p(x, \lambda)=\operatorname{det}(\lambda I-A(x))$ has n distinct zeros for each x in X.

Suppose A is multiplicity-free and that $U^{*} A U$ is diagonal for some U in $U(n, C(X))$.

Suppose A is multiplicity-free and that $U^{*} A U$ is diagonal for some U in $U(n, C(X))$.

Let $d_{i}(x)$ be the eigenvalue of $A(x)$ associated to the i th column of $U(x)$.

Suppose A is multiplicity-free and that $U^{*} A U$ is diagonal for some U in $U(n, C(X))$.

Let $d_{i}(x)$ be the eigenvalue of $A(x)$ associated to the i th column of $U(x)$.

The functions $d_{i}: X \longrightarrow \mathbb{C}, 1 \leq i \leq n$ are continuous and thus the characteristic polynomial of A globally splits:

$$
p(x, \lambda)=\prod_{i=1}^{n}\left(\lambda-d_{i}(x)\right)
$$

Example 2: $A \in M\left(2, C\left(S^{1}\right)\right)$

$$
A(z)=\left(\begin{array}{ll}
0 & z \\
1 & 0
\end{array}\right) .
$$

Example 2: $A \in \mathrm{M}\left(2, C\left(S^{1}\right)\right)$

$$
A(z)=\left(\begin{array}{ll}
0 & z \\
1 & 0
\end{array}\right)
$$

A is normal and multiplicity-free, but its characteristic polynomial

$$
p(z, \lambda)=\lambda^{2}-z
$$

cannot be continuously factored over S^{1}. Therefore A is not diagonalizable.

Example 2: $A \in \mathrm{M}\left(2, C\left(S^{1}\right)\right)$

$$
A(z)=\left(\begin{array}{ll}
0 & z \\
1 & 0
\end{array}\right)
$$

A is normal and multiplicity-free, but its characteristic polynomial

$$
p(z, \lambda)=\lambda^{2}-z
$$

cannot be continuously factored over S^{1}. Therefore A is not diagonalizable.

Problem: the zeros of the characteristic polynomial exhibit nontrivial monodromy.

Example 3: $A \in \mathrm{M}\left(2, C\left(S^{2}\right)\right)$

$$
A(x, y, z)=\frac{1}{2}\left(\begin{array}{cc}
1+x & y+i z \\
y-i z & 1-x
\end{array}\right) .
$$

Example 3: $A \in \mathrm{M}\left(2, C\left(S^{2}\right)\right)$

$$
A(x, y, z)=\frac{1}{2}\left(\begin{array}{cc}
1+x & y+i z \\
y-i z & 1-x
\end{array}\right) .
$$

A is normal and multiplicity-free with characteristic polynomial $p((x, y, z), \lambda)=\lambda^{2}-\lambda$, which certainly globally splits!

Example 3: $A \in \mathrm{M}\left(2, C\left(S^{2}\right)\right)$

$$
A(x, y, z)=\frac{1}{2}\left(\begin{array}{cc}
1+x & y+i z \\
y-i z & 1-x
\end{array}\right) .
$$

A is normal and multiplicity-free with characteristic polynomial $p((x, y, z), \lambda)=\lambda^{2}-\lambda$, which certainly globally splits!

However, the eigenspaces of $A(x, y, z)$ associated to the eigenvalue 1 define a nontrivial complex line bundle E_{1} over S^{2}, whence E_{1} does not admit a global nonvanishing section. This implies that A cannot be diagonalized.

Theorem (Grove and Pedersen, 1984)

Let X be a 2-connected $\left(\pi_{1}(X)=\pi_{2}(X)=0\right)$ compact CW complex and suppose that $A \in \mathrm{M}(n, C(X))$ is normal and multiplicity-free. Then A is diagonalizable.
$\pi_{1}(X)=0$ implies that the characteristic polynomial of A globally splits.
$\pi_{1}(X)=0$ implies that the characteristic polynomial of A globally splits.

A multiplicity-free implies that the eigenspaces $E_{1}(x), \ldots, E_{n}(x)$ of $A(x)$ define complex line bundles E_{1}, \ldots, E_{n} over X.
$\pi_{1}(X)=0$ implies that the characteristic polynomial of A globally splits.

A multiplicity-free implies that the eigenspaces $E_{1}(x), \ldots, E_{n}(x)$ of $A(x)$ define complex line bundles E_{1}, \ldots, E_{n} over X.
$\pi_{1}(X)=0$ and $\pi_{2}(X)=0$ imply that $H^{2}(X ; \mathbb{Z})=0$, which in turn implies that E_{1}, \ldots, E_{n} admit globally nonvanishing sections d_{1}, \ldots, d_{n}.
$\pi_{1}(X)=0$ implies that the characteristic polynomial of A globally splits.

A multiplicity-free implies that the eigenspaces $E_{1}(x), \ldots, E_{n}(x)$ of $A(x)$ define complex line bundles E_{1}, \ldots, E_{n} over X.
$\pi_{1}(X)=0$ and $\pi_{2}(X)=0$ imply that $H^{2}(X ; \mathbb{Z})=0$, which in turn implies that E_{1}, \ldots, E_{n} admit globally nonvanishing sections d_{1}, \ldots, d_{n}.

Apply Gram-Schmidt to $d_{1}(x), \ldots, d_{n}(x)$ for each x to obtain vectors $e_{1}(x), \ldots, e_{n}(x)$; these form the columns of a unitary matrix that diagonalizes A.

Question

When are multiplicity-free normal matrices A, B in $\mathrm{M}(n, C(X))$ unitarily equivalent?

Question

When are multiplicity-free normal matrices A, B in $\mathrm{M}(n, C(X))$ unitarily equivalent?

Necessary condition: A and B must have the same characteristic polynomial.

Question

When are multiplicity-free normal matrices A, B in $\mathrm{M}(n, C(X))$ unitarily equivalent?

Necessary condition: A and B must have the same characteristic polynomial.

However, this is not sufficient in general: see Example 3.

Theorem (Friedman-Park, 2014)

Let X be a connected CW complex and suppose A, B in $\mathrm{M}(n, C(X))$ are normal, multiplicity-free, and have the same characteristic polynomial. Then there exists a cohomology class $[\theta(A, B)]$ in $H^{2}\left(X\right.$, " $\left.\mathbb{Z}^{n "}\right)$ with the property that A, B are unitarily equivalent if and only if $[\theta(A, B)]=0$.

Corollary

Grove-Pedersen

Corollary

Grove-Pedersen

Corollary

If A, B in $\mathrm{M}\left(n, C\left(S^{1}\right)\right)$ are normal and multiplicity-free, then A and B are unitarily equivalent if and only if they have the same characteristic polynomial.

Corollary

Grove-Pedersen

Corollary
 If A, B in $\mathrm{M}\left(n, C\left(S^{1}\right)\right)$ are normal and multiplicity-free, then A and B are unitarily equivalent if and only if they have the same characteristic polynomial.

Proofs: In both cases, we have $H^{2}\left(X, " \mathbb{Z}^{n "}\right)=0$.

Corollary

Suppose X is a CW-complex that contains a countable number of 2-cells. Then the number of unitary equivalence classes of multiplicity-free normal matrices over $C(X)$ with a given characteristic polynomial is countable.

Proposition

Suppose A and B in $\mathrm{M}(n, C(X))$ are normal, multiplicity free, and have a common characteristic polynomial with trivial monodromy. Continuously order the eigenvalues $\lambda_{1}(x), \ldots, \lambda_{n}(x)$ of $A(x)$ and $B(x)$ and let E_{1}, \ldots, E_{n} and F_{1}, \ldots, F_{n} be the corresponding eigenbundles of A and B respectively. Then

$$
[\theta(A, B)]=\bigoplus_{i=1}^{n} c^{1}\left(\operatorname{Hom}\left(E_{i}, F_{i}\right)\right)
$$

Corollary

Suppose that $A \in \mathrm{M}(n, C(X))$ is normal and multiplicity-free and that the characteristic polynomial of A splits over $C(X)$. Choose an ordering $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ for the eigenvalues of A, and let D be the diagonal matrix with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Then

$$
\theta(D, A)=c_{1}\left(V_{1}\right) \oplus c_{1}\left(V_{2}\right) \oplus \cdots \oplus c_{1}\left(V_{n}\right)
$$

where $V_{1}, V_{2}, \ldots, V_{n}$ are the eigenbundles corresponding to the eigenvalues of A. Thus A is diagonalizable if and only if $V_{1}, V_{2}, \ldots, V_{n}$ all have trivial first Chern class.

Lemma

For $k>0$, the elementary symmetric polynomials s_{k} evaluated at $c_{1}\left(V_{1}\right), c_{1}\left(V_{2}\right), \ldots, c_{1}\left(V_{n}\right)$ vanish.

Lemma

For $k>0$, the elementary symmetric polynomials s_{k} evaluated at $c_{1}\left(V_{1}\right), c_{1}\left(V_{2}\right), \ldots, c_{1}\left(V_{n}\right)$ vanish.

Proof.

For each i, let $c\left(V_{i}\right)$ denote the total Chern class of V_{i}. Because each V_{i} is a line bundle, we have that $c\left(V_{i}\right)=1+c_{1}\left(V_{i}\right)$. By the Whitney product formula,

$$
\begin{aligned}
1= & c\left(\Theta^{n}(X)\right)=c\left(\oplus_{i=1}^{n} V_{i}\right)=\prod_{i=1}^{n} c\left(V_{i}\right) \\
& =\prod_{i=1}^{n}\left(1+c_{1}\left(V_{i}\right)\right)=1+\sum_{k=1}^{n} s_{k}\left(c_{1}\left(V_{1}\right), c_{1}\left(V_{2}\right), \ldots c_{1}\left(V_{n}\right)\right) .
\end{aligned}
$$

Proposition

Suppose that A in $M\left(n, C\left(\mathbb{C} P^{m}\right)\right)$ is normal and multiplicity-free and that $m>1$. Then A is diagonalizable.

Proposition

Suppose that A in $M\left(n, C\left(\mathbb{C} P^{m}\right)\right)$ is normal and multiplicity-free and that $m>1$. Then A is diagonalizable.

Proof.

$$
\left(s_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)^{2}-2 s_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}
$$

and so

$$
\left(c_{1}\left(V_{1}\right)\right)^{2}+\left(c_{1}\left(V_{2}\right)\right)^{2}+\cdots+\left(c_{1}\left(V_{n}\right)\right)^{2}=0
$$

Proof.

$$
\begin{aligned}
H^{*}\left(\mathbb{C} P^{m}\right) \cong \mathbb{Z}[\alpha] / \alpha^{m+1} \Rightarrow c_{1}\left(V_{i}\right)=k_{i} \alpha, k_{i} \in \mathbb{Z} \\
0=\sum_{i=1}^{n}\left(c_{1}\left(V_{i}\right)\right)^{2}=\sum_{i=1}^{n}\left(k_{i} \alpha\right)^{2}=\left(\sum_{i=1}^{n} k_{i}^{2}\right) \alpha^{2} \in H^{4}\left(\mathbb{C} P^{m}\right) .
\end{aligned}
$$

Because $m>1$, the class α^{2} is a generator of $H^{4}\left(\mathbb{C} P^{m}\right) \cong \mathbb{Z}$, and therefore all the integers k_{i} are zero. Therefore $c_{1}\left(V_{i}\right)=0$ for all $1 \leq i \leq n$.

Proposition

Suppose that X is a CW complex and let $\mu, \widetilde{\mu} \in C(X)[\lambda]$ be multiplicity-free polynomials that split over $C(X)$ and have the same degree. Then the number of unitary equivalence classes of normal matrices over X with characteristic polynomial μ is equal to the number of unitary equivalence class of normal matrices over X with characteristic polynomial $\tilde{\mu}$.

Theorem

Let X be a CW complex with $\operatorname{dim}(X) \leq 3$, and let $\mu \in C(X)[\lambda]$ be a multiplicity free polynomial of degree n that splits over $C(X)$.
There is a bijection between the set of unitary equivalence classes of $n \times n$ normal matrices with characteristic polynomial μ and elements of the group $\left(H^{2}(X)\right)^{n-1}=\oplus_{i=1}^{n-1} H^{2}(X)$.

Theorem

Let X be a CW complex with $\operatorname{dim}(X) \leq 3$, and let $\mu \in C(X)[\lambda]$ be a multiplicity free polynomial of degree n that splits over $C(X)$. There is a bijection between the set of unitary equivalence classes of $n \times n$ normal matrices with characteristic polynomial μ and elements of the group $\left(H^{2}(X)\right)^{n-1}=\oplus_{i=1}^{n-1} H^{2}(X)$.

Our $\mathbb{C} P^{m}$ example shows that the hypothesis $\operatorname{dim}(X) \leq 3$ is necessary.

Chern-Weil Theory

V is a smooth complex vector bundle over a smooth manifold X

Chern-Weil Theory

V is a smooth complex vector bundle over a smooth manifold X Embed V in a trivial bundle $\Theta^{n}(X)$, give $\Theta^{n}(X)$ its standard Hermitian structure, and let $P \in \mathrm{M}(n, C(X))$ be the orthogonal projection from $\Theta^{n}(X)$ to V

Chern-Weil Theory

V is a smooth complex vector bundle over a smooth manifold X
Embed V in a trivial bundle $\Theta^{n}(X)$, give $\Theta^{n}(X)$ its standard Hermitian structure, and let $P \in \mathrm{M}(n, C(X))$ be the orthogonal projection from $\Theta^{n}(X)$ to V

Let $d P$ denote the matrix of one-forms obtained by applying the exterior derivative d to each entry of P. Then $\frac{1}{2 \pi i} \operatorname{tr}(P d P d P)$ is a closed two-form whose class $H_{d e R}^{2}(X)$ in the de Rham cohomology of X is $c_{1}(V)$.

Example:

$$
\begin{aligned}
A & =\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \in M\left(2, C\left(S^{2}\right)\right) \\
a_{11} & =x^{2}+x^{3}+y^{2}+x y^{2}+i(1-x) z^{2} \\
a_{12} & =(y+i z)\left(x^{2}+y^{2}-i z^{2}\right) \\
a_{21} & =(y-i z)\left(x^{2}+y^{2}-i z^{2}\right) \\
a_{22} & =x^{2}-x^{3}+y^{2}-x y^{2}+i(1+x) z^{2}
\end{aligned}
$$

Example:

$$
\begin{gathered}
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \in M\left(2, C\left(S^{2}\right)\right) \\
a_{11}=x^{2}+x^{3}+y^{2}+x y^{2}+i(1-x) z^{2} \\
a_{12}=(y+i z)\left(x^{2}+y^{2}-i z^{2}\right) \\
a_{21}=(y-i z)\left(x^{2}+y^{2}-i z^{2}\right) \\
a_{22}=x^{2}-x^{3}+y^{2}-x y^{2}+i(1+x) z^{2} \\
\mu_{A}(\lambda)=\lambda^{2}-2\left(x^{2}+y^{2}+i z^{2}\right) \lambda+4 i\left(x^{2}+y^{2}\right) z^{2} \\
= \\
=\left(\lambda-2\left(x^{2}+y^{2}\right)\right)\left(\lambda-2 i z^{2}\right) .
\end{gathered}
$$

Spectral projection associated to $2\left(x^{2}+y^{2}\right)$ is

$$
P=\frac{1}{2}\left(\begin{array}{cc}
1+x & y+i z \\
y-i z & 1-x
\end{array}\right)
$$

Spectral projection associated to $2\left(x^{2}+y^{2}\right)$ is

$$
P=\frac{1}{2}\left(\begin{array}{cc}
1+x & y+i z \\
y-i z & 1-x
\end{array}\right)
$$

Switch to polar coordinates:

$$
P=\frac{1}{2}\left(\begin{array}{cc}
1+\sin \phi \cos \theta & \sin \phi \sin \theta+i \cos \phi \\
\sin \phi \sin \theta-i \cos \phi & 1-\sin \phi \cos \theta
\end{array}\right)
$$

$$
\operatorname{tr}(P d P d P)=\frac{i}{2} \sin \phi d \theta d \phi
$$

$$
\begin{gathered}
\operatorname{tr}(P d P d P)=\frac{i}{2} \sin \phi d \theta d \phi \\
\frac{1}{2 \pi i} \int_{S^{2}} \frac{i}{2} \sin \phi d \theta d \phi=1 \neq 0
\end{gathered}
$$

so A is not diagonalizable.
V and W complex line bundles with corresponding projections P and Q
V and W complex line bundles with corresponding projections P and Q
$R:=\left(\begin{array}{ccccccc}q_{11} p_{11} & \cdots & q_{11} p_{n 1} & \cdots & q_{1 n} p_{11} & \cdots & q_{1 n} p_{n 1} \\ \vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\ q_{11} p_{1 n} & \cdots & q_{11} p_{n n} & \cdots & q_{1 n} p_{1 n} & \cdots & q_{1 n} p_{n n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ q_{n 1} p_{11} & \cdots & q_{n 1} p_{n 1} & \cdots & q_{1 n} p_{11} & \cdots & q_{1 n} p_{n 1} \\ \vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\ q_{n 1} p_{1 n} & \cdots & q_{n 1} p_{n n} & \cdots & q_{n n} p_{1 n} & \cdots & q_{n n} p_{n n}\end{array}\right)$

$$
R=\left(\begin{array}{cccc}
q_{11} P^{T} & q_{12} P^{T} & \cdots & q_{1 n} P^{T} \\
q_{21} P^{T} & q_{22} P^{T} & \cdots & q_{2 n} P^{T} \\
\vdots & \vdots & \ddots & \vdots \\
q_{n 1} P^{T} & q_{n 2} P^{T} & \cdots & q_{n n} P^{T}
\end{array}\right)
$$

$$
R=\left(\begin{array}{cccc}
q_{11} P^{T} & q_{12} P^{T} & \cdots & q_{1 n} P^{T} \\
q_{21} P^{T} & q_{22} P^{T} & \cdots & q_{2 n} P^{T} \\
\vdots & \vdots & \ddots & \vdots \\
q_{n 1} P^{T} & q_{n 2} P^{T} & \cdots & q_{n n} P^{T}
\end{array}\right)
$$

R is the Kronecker product $Q \otimes P^{T}$ of Q and P^{T}

$$
R=\left(\begin{array}{cccc}
q_{11} P^{T} & q_{12} P^{T} & \cdots & q_{1 n} P^{T} \\
q_{21} P^{T} & q_{22} P^{T} & \cdots & q_{2 n} P^{T} \\
\vdots & \vdots & \ddots & \vdots \\
q_{n 1} P^{T} & q_{n 2} P^{T} & \cdots & q_{n n} P^{T}
\end{array}\right)
$$

R is the Kronecker product $Q \otimes P^{T}$ of Q and P^{T}

$$
c_{1}(\operatorname{Hom}(V, W))=\left[\frac{1}{2 \pi i} \operatorname{tr}(R d R d R)\right]
$$

$$
B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \in M\left(2, C\left(S^{2}\right)\right)
$$

$$
\begin{aligned}
& b_{11}=x^{2}-x^{2} z+y^{2}-y^{2} z+i z^{2}(z+1) \\
& b_{12}=(x+i y)\left(i x^{2}+i y^{2}+z^{2}\right) \\
& b_{21}=(-x+i y)\left(i x^{2}+i y^{2}+z^{2}\right) \\
& b_{22}=x^{2}+x^{2} z+y^{2}+y^{2} z+i z^{2}(z-1)
\end{aligned}
$$

$$
B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \in M\left(2, C\left(S^{2}\right)\right)
$$

$$
\begin{aligned}
b_{11} & =x^{2}-x^{2} z+y^{2}-y^{2} z+i z^{2}(z+1) \\
b_{12} & =(x+i y)\left(i x^{2}+i y^{2}+z^{2}\right) \\
b_{21} & =(-x+i y)\left(i x^{2}+i y^{2}+z^{2}\right) \\
b_{22} & =x^{2}+x^{2} z+y^{2}+y^{2} z+i z^{2}(z-1) \\
\mu_{B}(\lambda) & =\mu_{A}(\lambda)=\left(\lambda-2\left(x^{2}+y^{2}\right)\right)\left(\lambda-2 i z^{2}\right)
\end{aligned}
$$

Spectral projection associated to $2\left(x^{2}+y^{2}\right)$ is

$$
Q=\frac{1}{2}\left(\begin{array}{cc}
1-z & -y+i x \\
-y-i x & 1+z
\end{array}\right)
$$

Spectral projection associated to $2\left(x^{2}+y^{2}\right)$ is

$$
Q=\frac{1}{2}\left(\begin{array}{cc}
1-z & -y+i x \\
-y-i x & 1+z
\end{array}\right)
$$

$R=$

$$
\left(\begin{array}{cccc}
(1-z)(1+x) & (1-z)(y-i z) & (-y+i x)(1+x) & (-y+i x)(y-i z) \\
(1-z)(y+i z) & (1-z)(1-x) & (-y+i x)(y+i z) & (-y+i x)(1-x) \\
(-y-i x)(1+x) & (-y-i x)(y-i z) & (1+z)(1+x) & (1+z)(y-i z) \\
(-y-i x)(y+i z) & (-y-i x)(1-x) & (1+z)(y+i z) & (1+z)(1-x)
\end{array}\right)
$$

$\operatorname{tr}(R d R d R)=i(z d x d y-y d x d z+x d y d z)=-i \sin \phi d \theta d \phi$

$$
\operatorname{tr}(R d R d R)=i(z d x d y-y d x d z+x d y d z)=-i \sin \phi d \theta d \phi
$$

Thus

$$
\int_{S^{2}} \frac{1}{2 \pi i} \operatorname{tr}\left(R_{1} d R_{1} d R_{1}\right)=\frac{1}{2 \pi i} \int_{0}^{\pi} \int_{0}^{2 \pi}-i \sin \phi d \theta d \phi=-2 \neq 0
$$

and therefore A and B are not unitarily equivalent.

