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Theorem (Spectral Theorem)

Every normal element of M(n, C) is diagonalizable; i.e., is unitarily
equivalent to a diagonal matrix.
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If X is a topological space, is every normal element in M(n, C(X))
diagonalizable? In other words, if A € M(n, C(X)) is normal, does
there exist a unitary U € M(n, C(X)) such that U*AU is a
diagonal matrix?

Unitary Equivalence of Normal Matrices



If X is a topological space, is every normal element in M(n, C(X))
diagonalizable? In other words, if A € M(n, C(X)) is normal, does
there exist a unitary U € M(n, C(X)) such that U*AU is a
diagonal matrix?

No in general — R. Kadison gave a counterexample in M(2, C(5%)).
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What are the obstructions to a normal element in M(n, C(X))
being diagonalizable?
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What are the obstructions to a normal element in M(n, C(X))
being diagonalizable?

Example 1: A e M(2, C[-1,1])
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If U*AU diagonal, then
U(X):< (x) g(x)> . (g(x) f<x>>, 0

—f(x) &(x)




Ain M(n, C(X)) is multiplicity-free if A(x) has distinct eigenvalues
for each x in X.

Equivalently, A is multiplicity-free if its characteristic polynomial
p(x, A) = det(Al — A(x)) has n distinct zeros for each x in X.
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Suppose A is multiplicity-free and that U*AU is diagonal for some
U in U(n, C(X)).
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Suppose A is multiplicity-free and that U*AU is diagonal for some
U in U(n, C(X)).

Let d;(x) be the eigenvalue of A(x) associated to the ith column

of U(x).
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Suppose A is multiplicity-free and that U*AU is diagonal for some
U in U(n, C(X)).

Let d;(x) be the eigenvalue of A(x) associated to the ith column

of U(x).
The functions d; : X — C, 1 </ < n are continuous and thus the
characteristic polynomial of A globally splits:

n

p(x.2) = [T - di(x).

i=1
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Example 2: A € M(2, C(S1))

Az) = <(1’ g) .
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Example 2: A € M(2, C(S1))

Az) = <(1’ g) .

A is normal and multiplicity-free, but its characteristic polynomial
p(z,\) =N -z

cannot be continuously factored over S. Therefore A is not
diagonalizable.
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Example 2: A € M(2, C(S1))

Az) = <(1’ g) .

A is normal and multiplicity-free, but its characteristic polynomial
p(z,\) =N -z

cannot be continuously factored over S. Therefore A is not
diagonalizable.

Problem: the zeros of the characteristic polynomial exhibit
nontrivial monodromy.
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Example 3: A € M(2, C(5?))

1/1+x y+iz
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Example 3: A € M(2, C(5?))

1/1+x y+iz

A is normal and multiplicity-free with characteristic polynomial
p((x,y,2),\) = A% — A, which certainly globally splits!
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Example 3: A € M(2, C(5?))

1

1+x y+iz
A(vavz):2< Y )

y—iz 1—x

A is normal and multiplicity-free with characteristic polynomial
p((x,y,2),\) = A% — A, which certainly globally splits!

However, the eigenspaces of A(x, y, z) associated to the eigenvalue
1 define a nontrivial complex line bundle E; over 52, whence E;
does not admit a global nonvanishing section. This implies that A
cannot be diagonalized.

Unitary Equivalence of Normal Matrices



Theorem (Grove and Pedersen, 1984)

Let X be a 2-connected (m1(X) = m2(X) = 0) compact CW
complex and suppose that A € M(n, C(X)) is normal and
multiplicity-free. Then A is diagonalizable.
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71(X) = 0 implies that the characteristic polynomial of A globally
splits.
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71(X) = 0 implies that the characteristic polynomial of A globally
splits.

A multiplicity-free implies that the eigenspaces Ei(x), ..., En(x) of
A(x) define complex line bundles Ei, ..., E, over X.
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71(X) = 0 implies that the characteristic polynomial of A globally

splits.
A multiplicity-free implies that the eigenspaces Ei(x), ..., En(x) of
A(x) define complex line bundles Ei, ..., E, over X.

71(X) = 0 and mo(X) = 0 imply that H?(X;Z) = 0, which in turn
implies that Eg, ..., E, admit globally nonvanishing sections
di,...,dn.
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71(X) = 0 implies that the characteristic polynomial of A globally
splits.

A multiplicity-free implies that the eigenspaces Ei(x), ..., En(x) of
A(x) define complex line bundles Ei, ..., E, over X.

71(X) = 0 and mo(X) = 0 imply that H?(X;Z) = 0, which in turn
implies that Eg, ..., E, admit globally nonvanishing sections
di,...,dn.

Apply Gram-Schmidt to di(x), ..., dn(x) for each x to obtain

vectors ej(x), ..., en(x); these form the columns of a unitary
matrix that diagonalizes A.
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When are multiplicity-free normal matrices A, B in M(n, C(X))
unitarily equivalent?
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When are multiplicity-free normal matrices A, B in M(n, C(X))
unitarily equivalent?

Necessary condition: A and B must have the same characteristic
polynomial.
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When are multiplicity-free normal matrices A, B in M(n, C(X))
unitarily equivalent?

Necessary condition: A and B must have the same characteristic
polynomial.

However, this is not sufficient in general: see Example 3.
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Theorem (Friedman-Park, 2014)

Let X be a connected CW complex and suppose A, B in

M(n, C(X)) are normal, multiplicity-free, and have the same
characteristic polynomial. Then there exists a cohomology class
[0(A, B)] in H3(X, “Z"™) with the property that A, B are unitarily
equivalent if and only if [(A, B)] = 0.
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Grove-Pedersen
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Grove-Pedersen

If A, B in M(n, C(SY)) are normal and multiplicity-free, then A
and B are unitarily equivalent if and only if they have the same
characteristic polynomial.
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Grove-Pedersen

If A, B in M(n, C(SY)) are normal and multiplicity-free, then A
and B are unitarily equivalent if and only if they have the same
characteristic polynomial.

Proofs: In both cases, we have H2(X, “Z™) = 0.
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Suppose X is a CW-complex that contains a countable number of
2-cells. Then the number of unitary equivalence classes of
multiplicity-free normal matrices over C(X) with a given
characteristic polynomial is countable.
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Proposition

Suppose A and B in M(n, C(X)) are normal, multiplicity free, and
have a common characteristic polynomial with trivial monodromy.
Continuously order the eigenvalues A\i(x), ..., A\n(x) of A(x) and
B(x) and let Eq,...,E, and Fi,..., F, be the corresponding
eigenbundles of A and B respectively. Then

[0(A, B)] = é c!(Hom(E;, F))).

i=1
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Suppose that A € M(n, C(X)) is normal and multiplicity-free and
that the characteristic polynomial of A splits over C(X). Choose
an ordering {1, A2, ..., \p} for the eigenvalues of A, and let D be
the diagonal matrix with diagonal entries A1, Ao, ..., A,. Then

H(D, A) = C1(V1) D C1(V2) b---D C1(Vn),

where V1, Vs, ..., V, are the eigenbundles corresponding to the
eigenvalues of A. Thus A is diagonalizable if and only if
Vi, Vo, ..., V, all have trivial first Chern class.
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For k > 0, the elementary symmetric polynomials sy evaluated at
a(W),a(Va),...,ca(V,) vanish.

Unitary Equivalence of Normal Matrices



For k > 0, the elementary symmetric polynomials sy evaluated at
c1(Vh),c1(Va),...,c(Vy) vanish.

For each i, let ¢(V;) denote the total Chern class of V;. Because
each V; is a line bundle, we have that c(V;) =1+ ¢1(V;). By the
Whitney product formula,

n

1=c(0"(X)) = c(@y Vi) = [] (V)

i=1
=J[A+a(V) =1+ sc(a(V),a(Va),...a(Va).
i=1 k=1

O

v
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Proposition

Suppose that A in M(n, C(CP™)) is normal and multiplicity-free
and that m > 1. Then A is diagonalizable.
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Proposition

Suppose that A in M(n, C(CP™)) is normal and multiplicity-free
and that m > 1. Then A is diagonalizable.

(Sl(XlaX27 s 7Xn))2 - 252(X17X2) S 7Xn) = X% + X22 + - 'Xg

A

and so

(cr(Va))? + (e (V2))® + -+ - + (cr(Va))* = 0.

.

Unitary Equivalence of Normal Matrices



H*(CP™) = Z[a] /o™ = (V) = kia, ki € Z

0= zn:(q(\/;)V = Zn:(k;oz)2 = (Z k,?) a? € HY(CP™).

i=1 i=1 i=1

Because m > 1, the class a? is a generator of H*(CP™) = Z, and
therefore all the integers k; are zero. Therefore ¢;(V;) = 0 for all
1<i<n. ]

V
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Proposition

Suppose that X is a CW complex and let p, i € C(X)[\] be
multiplicity-free polynomials that split over C(X) and have the
same degree. Then the number of unitary equivalence classes of
normal matrices over X with characteristic polynomial p is equal
to the number of unitary equivalence class of normal matrices over
X with characteristic polynomial .

v
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Let X be a CW complex with dim(X) < 3, and let p € C(X)[A] be
a multiplicity free polynomial of degree n that splits over C(X).
There is a bijection between the set of unitary equivalence classes
of n X n normal matrices with characteristic polynomial 1 and

elements of the group (H?(X))"~! = @~ H*(X).
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Let X be a CW complex with dim(X) < 3, and let p € C(X)[A] be
a multiplicity free polynomial of degree n that splits over C(X).
There is a bijection between the set of unitary equivalence classes
of n X n normal matrices with characteristic polynomial 1 and

elements of the group (H?(X))"~! = @~ H*(X).

Our CP™ example shows that the hypothesis dim(X) < 3 is
necessary.
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Chern-Weil Theory

V is a smooth complex vector bundle over a smooth manifold X
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Chern-Weil Theory

V is a smooth complex vector bundle over a smooth manifold X

Embed V in a trivial bundle ©"(X), give ©"(X) its standard
Hermitian structure, and let P € M(n, C(X)) be the orthogonal
projection from ©"(X) to V
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Chern-Weil Theory

V is a smooth complex vector bundle over a smooth manifold X

Embed V in a trivial bundle ©"(X), give ©"(X) its standard
Hermitian structure, and let P € M(n, C(X)) be the orthogonal
projection from ©"(X) to V

Let dP denote the matrix of one—forms obtained by applying the
exterior derivative d to each entry of P. Then 5= tr(PdPdP) is a
closed two-form whose class H7.5(X) in the de Rham cohomology
of X is c1(V).
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Example:

A= (a” "”12> e M(2, C(5?))
a1 ax

ai1 = x>+ 3+ y? +xy? +i(1 — x)2

a2 = (y +iz)(x* + y* — iz?)

an = (y —iz)(x* + y* — iz?)

an = x* = X3+ y? — xy? +i(1 + x)2?
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Example:

A= (a” "”12> e M(2, C(5?))
a1 ax

ai1 = x>+ 3+ y? +xy? +i(1 — x)2

a2 = (y +iz)(x* + y* — iz?)

an = (y —iz)(x* + y* — iz?)

an = x* = X3+ y? — xy? +i(1 + x)2?

pa(N) = A2 =203 + y2 + iZ?)A + 4i(x2 + y?) 22

— ()\ — 2(x2 —|—y2)) ()\ — 2/'22).
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Spectral projection associated to 2(x? + y?) is

P—l 1+x y+iz
S 2\y—iz 1-x
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Spectral projection associated to 2(x? + y?) is

p_ 1/1+x y+iz
T 2\y—iz 1-x
Switch to polar coordinates:

1 1+ singcosfh singsinf + i cos ¢
2 \singsind —icos¢p 1 —singcosd
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tr(PdPdP) = é sin ¢ dOd¢
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tr(PdPdP) = é sin ¢ dOd¢

. .
. ésinqﬁd@dqﬁ:l#o,

27 S2

so A is not diagonalizable.
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V and W complex line bundles with corresponding projections P
and @
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V and W complex line bundles with corresponding projections P

and @
qiipir -+ qiiPm1 -+ qinP11 - QinPni
qi1Pin - q11Pnn - qinPin - q1nPnn
R:= : : : :
dniPi1 - QGniPn1 - QGinP11 - q1nPnl
qniPin - dn1Pnn - dnnPin - 4nnPnn
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quP" qnPT - qu.PT
g1P" qnPT - q.PT

qnl'DT anPT qnnPT
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quP" qnPT - qu.PT
g1P" qnPT - q.PT

qnl'DT anPT qnnPT

R is the Kronecker product Q ® PT of Q and PT
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quP" qnPT - qu.PT
g1P" qnPT - q.PT

qnl'DT anPT qnnPT
R is the Kronecker product Q ® PT of Q and PT

ci(Hom(V, W)) = [217” tr(RdR dR)}
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B— (b” b12> e M(2, C(5))
b1 b

b1y = x> — X’z 4+ y? — y?z 4 iz%(z + 1)

bi» = (x + iy)(ix2 +iy? + 22)
bor = (—x + iy)(ix* + iy? + 2°)
byy = x> + x°z + y2 + y2z + iz2(z -1)
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B = (bﬂ b12> e M(2,C(5?))
bx1 by

b1y = x> — X’z 4+ y? — y?z 4 iz%(z + 1)
by = (x + iy)(ix* + iy? + 2%)

bor = (—x + iy)(ix* + iy? + 2°)

byy = x* + X’z +y? + y?z +iz%(z — 1)

1e(\) = pa(\) = ()\ 23 y2)> ()\ - 2/22)
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Spectral projection associated to 2(x? + y?) is

Q—l 11—z —y+ix
S 2\—y—ix 1+z
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Spectral projection associated to 2(x? + y?) is

Q—l 11—z —y+ix
S 2\—y—ix 1+z

R=

1—-2)(y+i2) 1-2)(1-2) (—y +iz)(y+1iz) (—y+iz)(1—x)
(—y—ix)1+z) (-y—iz)(y—iz) (1+2)(1+2) (1+2)(y —i2)

((1z)<1+x> U-2)y—i2) (~y+ie)(1+a) <y+z‘x><yiz>)
(—y—iz)(y+iz) (—y—iz)(1—=x) A+ 2)(y+iz) 1+2)(1-x)
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tr(RdRdR) = i(zdxdy — ydxdz + xdydz) = —isin ¢dfd¢
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tr(RdRdR) = i(zdxdy — ydxdz + xdydz) = —isin ¢dfd¢

Thus

2w
/ —tr(Rl dRy dRy) = / / —isingdfdep = -2 # 0,
52 2T 27i

and therefore A and B are not unitarily equivalent.
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