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I Let X be a nice topological space, U an open covering. Let
π1(X ,U , p) be the normal subgroup of π1(X , p) generated by
elements of the form [α−1 ◦ β ◦ α] where β is contained in a
single element of U . This induces a covering pU : XU → X
such that pU∗(π1(XU , p)) = π1(X ,U , p).

I Let X be a length space. A δ-cover is the covering obtained
by using the open covering of all open balls of radius δ. We
denote this covering by X̃ δ.

I That is, X̃ δ := XUδ
, where Uδ = {B(δ, p) : p ∈ X}.
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I Let X be the flat 3× 2 torus, X = S1(3)× S1(2).

I X̃ δ = X for δ > 3
2 ,

all nontrivial homotopy classes of X are represented by loops
contained in δ-balls when δ > 3

2 .

I X̃ δ = R× S1(2) for 1 < δ ≤ 3
2 ,

once we descend past 3
2 , the generator corresponding to S1(3)

unfurls.

I X̃ δ = R× R for 0 < δ ≤ 1,
the generator corresponding to S1(2) does not unravel until δ
is at or below 2

2 = 1.

I Much of this behavior generalizes: the δ-covers are always
monotone, and X̃ δ = X̃ δ−ε for some ε > 0.
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Definition: Covering Spectrum

I Let X be a length space. The covering spectrum of X is:

CovSpec(X ) := {δ > 0 : X̃ δ 6= X̃ δ+ε ∀ε > 0}.

I Note that CovSpec(S1(3)× S1(2)) = {1, 3
2}.

I Properties:
If X is its own universal cover, CovSpec(X ) = ∅.
If X is a compact length space, CovSpec(X ) ⊂ (0, diam(X )) ,
the covering spectrum is discrete, and its closure is contained
in CovSpec(X ) ∪ {0}.

Ruth Gornet Covering Spectrum and Isospectrality



Outline
Covering Spectrum

Sunada Isospectral Manifolds
Group Theory and the Covering Spectrum

Riemann Surfaces and the Covering Spectrum
Ending Comments and Example

Definition: Covering Spectrum

I Let X be a length space. The covering spectrum of X is:

CovSpec(X ) := {δ > 0 : X̃ δ 6= X̃ δ+ε ∀ε > 0}.

I Note that CovSpec(S1(3)× S1(2)) = {1, 3
2}.

I Properties:
If X is its own universal cover, CovSpec(X ) = ∅.
If X is a compact length space, CovSpec(X ) ⊂ (0, diam(X )) ,
the covering spectrum is discrete, and its closure is contained
in CovSpec(X ) ∪ {0}.

Ruth Gornet Covering Spectrum and Isospectrality



Outline
Covering Spectrum

Sunada Isospectral Manifolds
Group Theory and the Covering Spectrum

Riemann Surfaces and the Covering Spectrum
Ending Comments and Example

Definition: Covering Spectrum

I Let X be a length space. The covering spectrum of X is:

CovSpec(X ) := {δ > 0 : X̃ δ 6= X̃ δ+ε ∀ε > 0}.

I Note that CovSpec(S1(3)× S1(2)) = {1, 3
2}.

I Properties:
If X is its own universal cover, CovSpec(X ) = ∅.
If X is a compact length space, CovSpec(X ) ⊂ (0, diam(X )) ,
the covering spectrum is discrete, and its closure is contained
in CovSpec(X ) ∪ {0}.

Ruth Gornet Covering Spectrum and Isospectrality



Outline
Covering Spectrum

Sunada Isospectral Manifolds
Group Theory and the Covering Spectrum

Riemann Surfaces and the Covering Spectrum
Ending Comments and Example

Recall the Sunada method for producing isospectral manifolds

I Let H,K be subgroups of G with the property, ∀x ∈ G

#(H ∩ [x ]) = #(K ∩ [x ])

where [x ] := conjugacy class of x in G .

I We call (G ,H,K ) a Gassmann-Sunada triple.

I Let M0 be a Riemannian manifold with surjective
homomorphism F : π1(M0) → G .

I Let MH be the Riemannian covering of M0 with fundamental
group F−1(H), and likewise MK .

I The Riemannian manifolds (MH , gH) and (MK , gK ) are then
isospectral.
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Our Motivation

I Sormani & Wei showed that certain Sunada isospectral
manifolds must have the same covering spectrum, thus raising
the questions:

I Is the covering spectrum a spectral invariant?
I Is the covering spectrum a Sunada isospectral invariant?

I Most of the “usual suspects” of Gassmann-Sunada triples
produce manifolds with the same covering spectrum.
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I Let M be a compact Riemannian manifold.Define the
minimum marked length map m : π1(M) → R by:

m(g) := the length of the shortest representative of the free
homotopy class of M corresponding to g .

I The mapping m has the following properties:
m(g) = 0 if and only if g = e,
m(hgh−1) = m(g) for all h ∈ π1(M),
m(g) = m(g−1) for all g ∈ π1(M).
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We have the following algorithm for computing CovSpec(M) :

I δ1 := min{m(h)/2 : h ∈ π1(M), h 6= e} = systol(M)/2
S1 := {h ∈ π1(M) : m(h) = 2δ1}
G1 := 〈S1〉
. . .

I δk+1 := min{m(h)/2 : h ∈ π1(M), h 6∈ Gk}
Sk+1 := {h ∈ π1(M) : m(h) = 2δk+1}
Gk+1 := 〈Sk+1,Gk〉
. . .

I stops when Gk0 = π1(M)
CovSpec(M) = {δ1, δ2, . . . , δk0}
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Let G be a group.

I A weighting of G is a map w : G → R+ ∪ {0,∞} such that
w(e) = 0
w(g) = w(g−1) ∀g ∈ G
w(xgx−1) = w(g) ∀g , x ∈ G

I Let w be a weighting of G . For r ≥ 0, define

Gr := 〈g ∈ G : w(g) < r〉 .

I We say r is a jump for w if for all ε > 0,
Gr is a proper subgroup of Gr+ε.

I The jump set of w is

jump(w) := {r ≥ 0 : r is a jump }.
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I Proposition: Let M be a compact Riemannian manifold with
minimum marked length map m : π1(M) → R+ ∪ {0}. Then

jump(m) = 2CovSpec(M)

I Recall that m : π1(M) → R maps g to the length of the
shortest representative of the free homotopy class of M
corresponding to g .
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Let (G ,H,K ) be a triple of finite groups with H,K ⊂ G (not
necessarily Sunada).

I We say a subset S of G is stable if xsx−1 ∈ S and s−1 ∈ S
whenever s ∈ S , x ∈ G .

The triple (G,H,K) satisfies condition

I ECS1 if for every stable subset S of G ,

# 〈H ∩ S〉 = # 〈K ∩ S〉

I ECS2 if for every pair of stable subsets S ,T of G ,

〈H ∩ S〉 = 〈H ∩ T 〉 ⇐⇒ 〈K ∩ S〉 = 〈K ∩ T 〉

I ECS3 if for each weighting w on G we have

jump(w |H) = jump(w |K )
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Example:

I Let G = M23, H = 24A7 and K = M21 ∗ 2.

I (G ,H,K ) forms a Sunada triple. (Guralnick and Wales)

I Consider the stable sets S = {elements of order 2} and
T = {elements of order 3}.

I 〈H ∩ S〉 = 〈H ∩ T 〉 = H

I 〈K ∩ S〉 is an index two subgroup of K and 〈K ∩ T 〉 = K .

I Consequently, (G ,H,K ) is a Gassmann-Sunada triple not
satisfying condition (ECS2).

I This is the example of least order that we found!

I In fact, S = [x ] for any element x of order 2 in G .
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We now construct isospectral Riemann surfaces with different
covering spectrum.

I Let G = M23, H = 24A7 and K = M21 ∗ 2.

I Pick a closed Riemann surface M0 of genus 2 with
fundamental group〈

α1, ᾱ1, β1, β̄1 : [α1, ᾱ1][β1, β̄1] = 1
〉

such that α1 corresponds to the shortest closed geodesic in
M0 and no other geodesic in M0 has this length.

I One easily constructs a surjective homomorphism
F : π1(M0) → M23 such that α1 maps to x , an element of
order 2 in M23.

I We obtain isospectral Riemann surfaces MH ,MK using the
Sunada setup.
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We use the Covering Spectrum Algorithm to compare.
I For both MH and MK the systol is the length of α1, hence

δ1 = length(α1)/2.

I The only closed geodesics of MH or MK that have length
length(α1) are lifts of α1 under the covering maps
p : MH → M0 and p : MK → M0.

I This translates to S1 = F−1([x ] ∩ H) for MH , and
S1 = F−1([x ] ∩ K ) for MK .

I For MH , since 〈H ∩ [x ]〉 = H, we have
G1 = 〈S1〉 = F−1(H) = π1(MH) and the covering spectrum is
singleton.

I However, for MK , K1 := 〈K ∩ [x ]〉 is index 2 in K , hence
G1 = F−1(K1) 6= π1(MK ). We conclude that the covering
spectrum must have at least 2 elements.

I Sunada isospectral Riemann surfaces need not have the same
covering spectrum.
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ONLY ONE MORE SLIDE

I For any Gassmann-Sunada triple not satisfying (ECS2) with a
generator of order 2, we can use this method while adjusting
the metric on M0 to obtain Sunada isospectral 4 manifolds
with different covering spectrum.

I We have a more straightforward albeit higher order example
with the same properties.

I Some of the Conway-Sloane isospectral flat 4-tori have
different covering spectrum.
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I One might expect that the number of elements in the
covering spectrum has an upper bound of the number of
generators needed for the fundamental group.

I Example: Consider a lattice L in R5 spanned by orthogonal

vectors e1, . . . , e5 where 1 ≤ ‖e1‖ < · · · < ‖e5‖ <
√

5
2 The flat

torus R5/L has covering spectrum given by
{‖e1‖, ‖e2, ‖, ‖e3‖, ‖e4‖, ‖e5‖}.

I Now let v = 1
2(e1 + · · ·+ e5) and consider the lattice

L′ = 〈L, v〉.
I Then L is a sublattice of L′ of index 2 and the first five

successive minima of L′ are the same as for L since any
vector in L′ of the form v + w, where w ∈ L, has length

greater than
√

5
2 .

I It is then clear that the covering spectrum of the flat torus
R5/L′ will have six elements in it.
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