
Traces and Determinants

Let A be an n× n matrix with complex entries:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 .

Then

trA =

n∑
i=1

aii

and
detA =

∑
σ∈Sn

(signσ)a1σ(1)a2σ(2) · · · anσ(n).

Properties of trace: For A and B in M(n,C) and S in GL(n,C),

• tr(A+B) = trA+ trB;

• tr(AB) = tr(BA);

• tr(SAS−1) = trA;

• The trace of A is the sum of the eigenvalues of A.

Properties of determinant:

• det(AB) = det(BA) = (detA)(detB);

• det(SAS−1) = detA;

• The determinant of A is the product of the eigenvalues of A.

Define the exponential of A as

expA :=

∞∑
k=0

1

k !
Ak.

Warning: In general exp(A+B) 6= (expA)(expB) unless A and B commute.



Theorem: det(expA) = etrA

Proof: First consider the case of a k × k Jordan block:

exp tr



c 1 0 · · · 0 0
0 c 1 · · · 0 0
0 0 c · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · c 1
0 0 0 · · · 0 c


= eck

det exp



c 1 0 · · · 0 0
0 c 1 · · · 0 0
0 0 c · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · c 1
0 0 0 · · · 0 c


= det



ec e 0 · · · 0 0
0 ec e · · · 0 0
0 0 ec · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ec e
0 0 0 · · · 0 ec


= (ec)k = eck.

Therefore the theorem is true for Jordan blocks. Next, suppose we have a matrix
in Jordan canonical form:

J =


J1 0 0 · · · 0
0 J2 0 · · · 0
0 0 J3 · · · 0
...

...
...

. . .
...

0 0 0 0 · · · Jm

 .

Then

exp J =


exp J1 0 0 · · · 0

0 exp J2 0 · · · 0
0 0 exp J3 · · · 0
...

...
...

. . .
...

0 0 0 0 · · · exp Jm


and so

det exp J = (det exp J1)(det exp J2) · · · (det expJn)

= etr J1etr J2 · · · etr Jn

= etr J1+tr J2+··· tr Jn

= etr J .
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Finally, given A in M(n,C), write A = SJS−1, where J is in Jordan canonical
form. Then

det expA = det exp(SJS−1) = det
(
S(exp J)S−1

)
= det exp J = etr J = etr(SJS−1) = etrA.

Let V be a complex vector space equipped with an inner product. This is a
function 〈·, ·〉 : V × V → C such that for all elements v, w, and u in V and all
complex numbers α and β,

• 〈αv + βw, u〉 = α 〈v, u〉+ β 〈w, u〉;

• 〈v, αw + βu〉 = α 〈v, w〉+ β 〈v, u〉;

• 〈w, v〉 = 〈v, w〉;

• 〈v, v〉 ≥ 0, with 〈v, v〉 = 0 if and only if v = 0.

An orthonormal basis for V is a vector space basis {ek}nk=1 for V with the
additional properties

• 〈ek, ek〉 = 1 for 1 ≤ k ≤ n;

• 〈ek, e`〉 = 0 for k 6= `.

Let A be a linear transformation of V . Then

trA =

n∑
k=1

〈Aek, ek〉

and
detA =

∑
σ∈Sn

(signσ)
〈
Ae1, eσ(1)

〉 〈
Ae2, eσ(2)

〉
· · ·
〈
Aen, eσ(n)

〉
.

These quantities are independent of the choice of orthonormal basis.

The adjoint of A is the linear transformation determined by the equation

〈Av,w〉 = 〈v,A∗w〉

for all v and w in V .

If we write A as a matrix with respect to an orthonormal basis, then A∗ is the
complex conjugate transpose of A; i.e., the (i, j) entry of A∗ is aji. Thus

trA∗ = trA, detA∗ = detA.
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Now let V be an infinite-dimensional complex inner product space and define
a norm ‖v‖ :=

√
〈v, v〉 for every v in V . We say that V is complete if every

Cauchy sequence with respect to this norm is convergent. In this case we will
use the letter H to denote our complex inner product space, and we call it a
Hilbert space.

We will only consider separable Hilbert spaces. This means that H contains a
countably infinite subset {ek} with the following properties:

• 〈ek, ek〉 = 1 for all k;

• 〈ek, e`〉 = 0 for k 6= `;

• v =
∞∑
k=1

〈v, ek〉ek for every v in H.

Warning: the set {ek} is not a vector space basis!

Let A be a linear transformation of H. We say that A is bounded if

‖A‖ := sup

{
‖Av‖
‖v‖

: v 6= 0

}
<∞.

We will call a bounded linear transformation of H an operator on H.

The collection of all operators on H is an algebra (closed under addition, mul-
tiplication [composition], scalar multiplication), and is denoted B(H).

How do we define trace for operators on H?

Naive idea: choose an orthonormal basis {ek} for H and set

trA =

∞∑
k=1

〈Aek, ek〉 .

Problem 1: The right-hand side does not necessarily converge.

Example:

tr I =

∞∑
k=1

〈Iek, ek〉 =

∞∑
k=1

〈ek, ek〉 =

∞∑
k=1

1 =∞.

So not every operator has a well-defined trace.

Problem 2: Even if the right-hand side does converge, its value may depend on
the choice of orthonormal basis.
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An operator P on H is positive if 〈Pv, v〉 ≥ 0 for all v in H.

Example: Let A be any operator on H. Then A∗A is positive, because

〈A∗Av, v〉 = 〈Av,Av〉 ≥ 0.

In fact, every positive operator P has this form for some operator A.

If P is positive, then

∞∑
k=1

〈Pek, ek〉 is in [0,∞] and is independent of the choice

of orthonormal basis.

Every positive operator P has a positive square root operator
√
P . Define

|A| :=
√
A∗A.

Example: Take

A =

− 27
25 + 32

25 i −
36
25 −

24
25 i

− 36
25 −

24
25 i −

48
25 + 18

25 i

 .

Then

A∗A =

 29
5

12
5

12
5

36
5

 .

Let

S =

 3
5 − 4

5

4
5

3
5

 .

Then

S−1(A∗A)S =

(
9 0
0 4

)
,

whence √
S−1(A∗A)S =

(
3 0
0 2

)
and thus

|A| = S
(√

S−1(A∗A)S
)
S−1 =

 59
25

12
25

12
25

66
25

 .
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Define

L1(H) :=

{
A ∈ B(H) :

∞∑
k=1

〈|A|ek, ek〉 <∞

}
.

The set L1(H) is an ideal in B(H) and is called the ideal of trace-class operators
onH. For A in L1(H) we can define trA in the naive way we originally proposed:

trA =

∞∑
k=1

〈Aek, ek〉 .

Properties of tr:

• tr(A+B) = trA+ trB for A and B in L1(H);

• tr(AB) = tr(BA) for A in L1(H) and B in B(H);

• tr(SAS−1) = trA for A in L1(H) and S in B(H) invertible;

• trA is the sum of the eigenvalues of A for all A in L1(H).

Remark: This last statement, known as Lidskii’s theorem, was not proved until
1959.

How do we define the determinant?

For ‖A‖ < 1, we can define the logarithm of I +A by the infinite series

log(I +A) =

∞∑
n=1

(−1)n+1

n
An.

If A is trace class, then for µ ∈ C with sufficiently small modulus, the operator
log(1 + µA) is also trace class, so we can define

det(I + µA) = etr(log(I+µA))

and then extend by analytic continuation, so that the domain of det is

GL(1, (I + L1(H)),

the multiplicative group of invertible elements of B(H) of the form I + L for
some L in L1(H).
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Properties of det:

• det(AB) = (detA)(detB) for A and B in GL(1, I + L1(H));

• detA−1 = (detA)−1 for A in GL(1, (I + L1(H));

• det(SAS−1) = detA for A in GL(1, (I+L1(H)) and S in B(H) invertible;

• detA is the product of the eigenvalues of A for A in GL(1, I + L1(H)).

These quantities are hard to compute directly, especially the determinant! How-
ever, in certain cases of geometric and/or topological interest, there are other
ways to proceed.

Example 1:

Suppose K : [a, b] × [a, b] → C is continuous and define A in B(L2[a, b]) by the
formula

(Af)(x) =

∫ b

a

K(x, y)f(y) dy.

This is an example of a compact operator. It is not always trace class (in fact,
it is an open problem to find necessary and sufficient conditions on K so that
A is trace class), but if A, is trace class, then

trA =

∫ b

a

K(x, x) dx.

We can also express det(I +A) in terms of K. For each n-tuple (x1, x2, . . . , xn)
in [a, b], define

Kn(x1, x2, . . . , xn) = det


K(x1, x1) K(x1, x2) · · · K(x1, xn)
K(x2, x1) K(x2, x2) · · · K(x2, xn)

...
...

. . .
...

K(xn, x1) K(xn, x2) · · · K(xn, xn)


Then

det(I +A) = 1 +

∞∑
n=1

1

n!

∫ b

a

· · ·
∫ b

a

Kn(x1, x2, . . . , xn) dx1 dx2 . . . dxn.
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Example 2:
Consider the Hilbert space L2(S1) with the inner product

〈f, g〉 =
1

2π

∫ 2π

0

f(θ)g(θ) dθ.

This Hilbert space has orthonormal basis

{einθ : n ∈ Z} = {zn : n ∈ Z}.

Let C(S1) denote the algebra of continuous complex-valued functions on the
circle. For each φ in C(S1), define an operator Mφ on L2(S1) via pointwise
multiplication:

(Mφf)(x) = φ(x)f(x).

Next, let H2(S1) be the Hilbert subspace of L2(S1) whose orthonormal basis is

{zn : n ≥ 0}.

An alternate description of H2(S1) is the Hilbert subspace of the elements of
L2(S1) that extend to analytic functions on the disk {z ∈ C : |z| < 1}.

Define the orthogonal projection P : L2(S1)→ H2(S1) by

P

( ∞∑
n=−∞

anz
n

)
=

∞∑
n=0

anz
n.

Then for each φ in C(T ), define the Toeplitz operator Tφ on H2(S1) by the
formula

Tφ = PMφ.

Properties of Toeplitz operators: For φ and ψ in C(S1) and λ in C,

• Tφ+ψ = Tφ + Tψ;

• Tλφ = λTφ;

• T ∗φ = Tφ.

Tφψ 6= TφTψ in general, but for φ and ψ in C∞(S1), we have

TφTφ − TψTφ ∈ L1(H).

Surprisingly (at first), the trace of this quantity can be nonzero. This is be-
cause TφTφ and TψTφ are typically not trace class operators, even though their
difference is.
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Example:
Tz−3Tz3(zn) = zn for all n ≥ 0

Tz3Tz−3(zn) =

{
0 0 ≤ n < 3

zn n ≥ 3

Therefore
tr (Tz−3Tz3 − Tz3Tz−3) = 3.

In general,

tr (TzmTzn − TznTzm) =

{
n if m+ n = 0

0 otherwise.

Also observe that

1

2πi

∫ 2π

0

eimθd(einθ) =
1

2πi

∫ 2π

0

ineimθeinθ dθ =

{
n if m+ n = 0

0 otherwise.

Theorem: For φ and ψ in C∞(S1),

tr (TφTψ − TψTφ) =
1

2πi

∫
S1

φdψ.

Proof: Write φ and ψ in terms of the basis {zn : n ≥ 0} and combine the
linearity of the trace and the integral with the computations in the example
above.

We can generalize this result somewhat. Define

T ∞ :=
{
Tφ + L : φ ∈ C∞(S1), L ∈ L1(H2(S1))

}
.

Then there exists a short exact sequence

0 // L1(H2(S1)) // T ∞ σ // C∞(S1) // 0 ,

and the symbol map σ : T ∞ → C∞(S1) is given by the formula σ(Tφ +L) = φ.
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Theorem: For T1 and T2 in T ∞,

tr (T1T2 − T2T1) =
1

2πi

∫
S1

σ(T1) d(σ(T2)).

Proof: Write T1 = Tφ1 + L1 and T1 = Tφ2 + L2. Then

tr (T1T2 − T2T1) = tr ((Tφ1 + L1)(Tφ2 + L2)− (Tφ2 + L2)(Tφ1 + L1))

= tr (Tφ1Tφ2 − Tφ2Tφ1 + Tφ1L2 − L2Tφ1

+L1Tφ2 − Tφ2L1 + L1L2 − L2L1)

= tr (Tφ1Tφ2 − Tφ2Tφ1) + tr (Tφ1L2 − L2Tφ1)

+ tr (L1Tφ2 − Tφ2L1) + tr (L1L2 − L2L1)

= tr (Tφ1Tφ2 − Tφ2Tφ1)

=
1

2πi

∫
φ1 dφ2

=
1

2πi

∫
σ(T1) d(σ(T2)).

Note that tr (T1T2 − T2T1) only depends on the symbols of T1 and T2!

Now let’s look at the determinant.

Suppose φ, ψ are nowhere-vanishing functions in C∞(S1) and that the winding
numbers of φ and ψ are zero. Then Tφ and Tψ are invertible (this is a nontrivial
fact!).

Warning: T−1
φ 6= Tφ−1 in general!

Note that
σ
(
TφTψT

−1
φ T−1

ψ

)
= φψφ−1ψ−1 = 1,

whence TφTψT
−1
φ T−1

ψ is in I + L1(H2(S1)).

det
(
TφTψT

−1
φ T−1

ψ

)
=??

10



It’s not too hard to prove that the quantity we are taking the determinant of
only depends on the symbols φ and ψ. That is, if T1 and T2 are invertible
Toeplitz operators with σ(T1) = φ and σ(T2) = ψ, then

det
(
T1T2T

−1
1 T−1

2

)
= det

(
TφTψT

−1
φ T−1

ψ

)
.

Theorem [Campbell-Baker-Hausdorff-Dynkin-· · · ]: Suppose A and B are
operators on H. If ‖A‖+ ‖B‖ <

√
2, then (expA)(expB) = expC, where

C = A+B +
1

2
[A,B] +

1

12
[A, [A,B]]− 1

12
[B, [A,B]]

+ terms involving higher commutators of A and B.

Corollary:

(expA)(expB)(exp(−A))(exp(−B)) =

exp ([A,B] + terms involving higher commutators of A and B) .

Suppose φ and ψ are close to 1. Then φ = eα and ψ = eβ for functions α and
β in C∞(S1). Note that

σ(expTα) = eσ(Tα) = eα = φ

σ(expTβ) = eσ(Tβ) = eα = ψ.

Therefore

det
(
TφTψT

−1
φ T−1

ψ

)
= det (exp(Tα) exp(Tβ) exp(−Tα) exp(−Tβ))

= det exp (TαTβ − TβTα + higher commutators)

= exp tr (TαTβ − TβTα + higher commutators)

= exp

(
1

2πi

∫
S1

αdβ

)
= exp

(
1

2πi

∫
S1

log φd(logψ)

)
= exp

(
1

2πi

∫
S1

log φ · dψ
ψ

)
.
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Let’s look at this from a different point of view.

Let H be a Hilbert space. Then Hn is also a Hilbert space:

〈(v1, v2, . . . , vn), (w1, w2, . . . , wn)〉 := 〈v1, w1〉+ 〈v2, w2〉+ · · ·+ 〈vn, wn〉 .

We can view elements of B(Hn) as elements of M(n,B(H)). By extending the
notion of symbol in the obvious way, we have a short exact sequence

0 // L1((H2(S1))n) // M(n, T ∞)
σ // M(n,C∞(S1)) // 0 .

Suppose φ and ψ are arbitrary invertible elements of C∞(S1). Then we can find
matrices R and S in GL(3, T ∞) such that

σ(R) =

φ 0 0
0 φ−1 0
0 0 1


and

σ(S) =

ψ 0 0
0 1 0
0 0 ψ−1

 .

For example, we can choose

R =

2Tφ − TφTφ−1Tφ TφTφ−1 − I 0
I − Tφ−1Tφ Tφ−1 0

0 0 I


and

S =

2Tψ − TψTψ−1Tψ 0 TψTψ−1 − I
0 I 0

I − Tψ−1Tψ 0 Tψ−1


We infer from the short exact sequence above that the operator RSR−1S−1 is
determinant-class. Furthermore, the value of this determinant does not depend
on the choice of R and S satisfying the properties above - the determinant of
RSR−1S−1 only depends on φ and ψ.

Suppose that φ and ψ are restrictions of meromorphic functions (which we also
denote φ and ψ) defined in a neighborhood of the closed unit disk such that
neither φ nor ψ has zeros or poles on the unit circle. For each point z in the
open unit disk D, define

v(φ, z) =


m if φ has a zero of order m at z

−m if φ has a pole of order m at z

0 if φ has neither a zero nor a pole at z,
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and similarly define v(ψ, z). The quantity

lim
w→z

(−1)v(φ,z)v(ψ,z)ψ(w)v(φ,z)

φ(w)v(ψ,z)

is called the tame symbol of φ and ψ at z and is denoted (φ, ψ)z.

Example:

φ(z) =
z3 − 3z2

2z + 1
double zero at 0, simple zero at 3, simple pole at −1/2

ψ(z) =
2z − 1

z3
simple zero at 1/2, triple pole at 0

(φ, ψ)0 = lim
w→0

(−1)(2)(−3)

(
2w−1
w3

)2(
w2(w−3)

2w+1

)−3


= lim
w→0

(2w − 1)2

w6
· w

6(w − 3)3

(2w + 1)3

= lim
w→0

(2w − 1)2(w − 3)3

(2w + 1)3

= −27

(φ, ψ)−1/2 = lim
w→−1/2

(−1)(−1)(0)

(
2w−1
w3

)−1(
w2(w−3)

2w+1

)0


= lim
w→−1/2

w3

2w − 1

=
1

16

(φ, ψ)1/2 = lim
w→1/2

(−1)(0)(−1)

(
2w−1
w3

)0(
w2(w−3)

2w+1

)1


= lim
w→1/2

2w + 1

w2(w − 3)

= −16

5
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We will not compute (φ, ψ)3 for reasons that will be become clear in a minute.
For all other complex numbers z, we see that (φ, ψ)z = 1.

Theorem:
det(RSR−1S−1) =

∏
z∈D

(φ, ψ)−1
z .

Remark 1: Suppose that TΦ and Tψ are invertible. Then we can take

R =

Tφ 0 0
0 T−1

φ 0

0 0 I


and

S =

Tψ 0 0
0 I 0
0 0 T−1

ψ

 ,

whence

det(RSR−1S−1) = det

TφTψT−1
φ T−1

ψ 0 0

0 I 0
0 0 I

 = det
(
TφTψT

−1
φ T−1

ψ

)
.

Remark 2: In fact, det(RSR−1S−1) only depends on the Steinberg symbol {φ, ψ}
of φ and ψ. This is an element of the algebraic K-theory group K2(C∞(S1)),
and we can use the above theorem to prove that certain Steinberg symbols are
nontrivial.

Surprising fact that comes out of this circle of ideas: if both φ and ψ := 1− φ
are invertible, then det(RSR−1S−1) = 1.
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The de la Harpe-Skandalis “Determininant”

Suppose A is a unital Banach algebra with a trace τ : A → C. Then we can
extend τ to a trace on M(n,A) in the obvious way.

Let GL0(n,A) denote the connected component of the identity matrix in GL(n,A).
Then given a C1-path ξ in GL0(n,A), define

∆̃(ξ) = τ

(
1

2πi

∫ 1

0

ξ′(t)ξ(t)−1 dt

)
=

1

2πi

∫ 1

0

τ
(
ξ′(t)ξ(t)−1

)
dt.

Properties of ∆̃:

• Suppose that ξ = ξ1 ·ξ2 (pointwise product). Then ∆̃(ξ) = ∆̃(ξ1)+∆̃(ξ2);

• If |ξ(t)− 1‖ < 1 for all 0 ≤ t ≤ 1, then

∆̃(ξ) =
1

2πi
τ

(
log(ξ(1))− 1

2πi
log ξ((0))

)
;

• The value of ∆̃(ξ) only depends on the homotopy class of ξ with the end-
points fixed ;

• Given an idempotent p (i.e, p2 = p) in M(n,A), define ξp by the formula

ξp(t) = e2πitp+ (1− p). Then ∆̃(ξp) = τ(p).

Suppose x is an element of GL0(n,A), choose a C1-path ξ from 1 to x, and

define ∆(x) = ∆̃(ξ).

Problem: ∆(x) depends on the choice of path ξ.

What we really have, via the (in)famous Bott periodicity theorem in K-theory,
is a function into C/τ(K0(A)).

Properties of ∆:

• ∆ is a group homomorphism;

• ∆ is surjective if and only if τ is surjective;

• ∆(ey) = τ(y) + τ(K0(A)) for y in M(n,A).
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Corollary: Suppose that τ(K0(A) ∼= Z). Then

exp(2πi∆) : GL0(n,A)→ C∗

is a group homomorphism, and

exp(2πi∆)(ey) = eτ(y)

for y in M(n,A). In particular, if A = C and τ is the identity map, then
exp(2πi∆) is the usual determinant on M(n,C).

The Fuglede-Kadison-Brown-Hochs-Kaad-Schemaitat Determinant

A von Neumann algebra is a C∗-subalgebra of B(H) that is closed in the topology
of pointwise convergence.

Example: L∞(R)

Suppose we have a “nice” (normal, faithful, semifinite) trace τ defined on posi-
tive elements in N .

Example: For L∞(R), take τ(f) =

∫ ∞
−∞

f(x) dx.

Let L1(N ) be the trace ideal. For invertible elements in N of the form 1+x with
x in L1(N ), the aforementioned authors define a determinant homomorphism
detτ with values in (0,∞):

detτ (1 + x) = eτ(log |1+x|).

This determinant is multiplicative – this is highly nontrivial to show and involves
techniques from algebraic K-theory and Connes’ cyclic homology.
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Example: Wiener-Hopf Operators

Consider the Hilbert space L2(R). There is a Hilbert subspace H2(R) of L2(R)
that consists of elements that have an analytic extension to the upper half plane,
satisfying a certain growth condition. Let P denote orthogonal projection from
L2(R) onto H2(R).

Let Cb(R) denote the algebra of bounded continuous functions on the real line.
For each φ in Cb(R), multiplication by φ defines an element of B(L2(R)), and
we can compress to H2(R) just as we did in the circle case to obtain an operator
Wφ on B(H2(R)):

Wφ = PMφ.

The algebra of almost periodic functions on R is the norm-closed subalgebra
of Cb(R) generated by the functions t → eiλt for λ real. This algebra can be
identified with C(RB), the continuous functions on the Bohr compactification
of R.

Let W be the C∗-subalgebra of B(H2(R)) generated {Wφ : φ ∈ C(RB)}. Then
there is a short exact sequence

0 // C // W σ // C(RB) // 0,

where C is the commutator ideal of W. This commutator ideal lives inside, but
is not equal to, the trace ideal associated to a von Neumann trace. Just as in
the circle case, there is a “smooth” version of this short exact sequence:

0 // C∞ // W∞ σ // C∞(RB) // 0.

Theorem: Suppose W1 and W2 in W∞ have symbols φ and ψ respectively.
Then

tr (W1W2 −W2W1) = lim
R→∞

(
1

2R

∫ R

−R
φ(t)ψ′(t) dt

)
.

Theorem: Suppose W1 and W2 in W∞ are invertible, have symbols φ and ψ
respectively, and are close to I. Then

detτ
(
W1W2W

−1
1 W−1

2

)
= lim
R→∞

(
exp

(
1

2R
Re

(∫ R

−R
log(φ(t))

ψ′(t)

ψ(t)
dt

)))
.
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