Traces and Determinants

Let A be an n X n matrix with complex entries:

aix aiz - Qip
a1 Az - Q2p
A =
an1l An2 e Ann
Then
n
trA = E (0771
i=1
and

det A= " (sign0)a10(1)020(2) *** Ano(n)-
€Sy

Properties of trace: For A and B in M(n,C) and S in GL(n, C),
o tr(A+ B) =tr A+ trB;
e tr(AB) = tr(BA);
o tr(SAS™Y) = tr 4;

e The trace of A is the sum of the eigenvalues of A.

Properties of determinant:
e det(AB) = det(BA) = (det A)(det B);
o det(SAS™!) = det 4;

e The determinant of A is the product of the eigenvalues of A.

Define the exponential of A as

SN
exp A := Z EAk'
k=0 "~

Warning: In general exp(A + B) # (exp A)(exp B) unless A and B commute.



Theorem: det(exp A) = e 4

Proof: First consider the case of a k x k Jordan block:

c 1 0 --- 00

0O ¢c1 --- 00

0 0 ¢ 0 0

exptr | . . . ] =€

0 0O c 1

0 0O 0 c
c 0 0 0 e e 0 0 0
0 c 0 0 0 e e 0 0
00 ¢ --- 0O 0 0 e --- 0 O

detexp | . . . . | =det | . . L . . :(ec)k:eCk.

000 --- ¢ 1 0 0 0 e
000 --- 0 ¢ 0 0 O 0 e°

Therefore the theorem is true for Jordan blocks. Next, suppose we have a matrix
in Jordan canonical form:

J 0 0 - 0
0 J 0 .- 0

Then
exp J1 0 0 e 0
0 exp Jo 0 cee 0
expJ = 0 0 expJs .- 0
0 0 0 0--- expJdm
and so

detexp J = (detexp Jy)(det exp J) - - - (det exp Jy,)

_ etr J1 etr Ja . etr JIn

—_ etr J1+tr Jo+---tr Iy,

_ etrJ.



Finally, given A in M(n,C), write A = SJS~!, where J is in Jordan canonical
form. Then

detexp A = detexp(SJS™") = det (S(exp J)S™')

=detexpJ =" = R

Let V be a complex vector space equipped with an inner product. This is a
function (-,-) : V. x V' — C such that for all elements v, w, and w in V" and all
complex numbers « and S,

o (av+ Bw,u) = a(v,u) + B {w,u);
o (v, aw + Bu) = a (v,w) + B (v,u);
o (w,v) = (v, w);
(

o (v,v) >0, with (v,v) =0 if and only if v = 0.

An orthonormal basis for V is a vector space basis {ex}}_; for V with the
additional properties

b <€k,8k>=1for1§k§n;

L] <ek,eg> =0 for k& #f

Let A be a linear transformation of V. Then

trA= Z (Aey, ex)

k=1

and

det A = Z (signo) <Ael, 60(1)> <A62, 60(2)> e <Aen, ea(n)> .
g€eSy

These quantities are independent of the choice of orthonormal basis.

The adjoint of A is the linear transformation determined by the equation
(Av,w) = (v, A*w)

for all v and w in V.

If we write A as a matrix with respect to an orthonormal basis, then A* is the
complex conjugate transpose of A; i.e., the (4, j) entry of A* is @j;. Thus

tr A* =tr A, det A* = det A.



Now let V' be an infinite-dimensional complex inner product space and define
a norm ||v|| := /{(v,v) for every v in V. We say that V is complete if every
Cauchy sequence with respect to this norm is convergent. In this case we will
use the letter H to denote our complex inner product space, and we call it a
Hilbert space.

We will only consider separable Hilbert spaces. This means that H contains a
countably infinite subset {e} with the following properties:

e (ep,ex)y =1 for all k;

L] <ek,6g> =0 for k # é;

° V= (v, ex)ey, for every v in H.
k=1

Warning: the set {e;} is not a vector space basis!

Let A be a linear transformation of H. We say that A is bounded if

Av
|A]] := sup { ”HUH” tvF# 0} < 00.

We will call a bounded linear transformation of H an operator on H.

The collection of all operators on H is an algebra (closed under addition, mul-
tiplication [composition], scalar multiplication), and is denoted B(#H).

How do we define trace for operators on H?

Naive idea: choose an orthonormal basis {ej} for H and set

trA = Z (Aey, ex) .

k=1

Problem 1: The right-hand side does not necessarily converge.

Example:
trl = Z (Ieg,er) = Z ek, ex) = Zl = 00.
k=1 k=1 k=1

So not every operator has a well-defined trace.

Problem 2: Even if the right-hand side does converge, its value may depend on
the choice of orthonormal basis.



An operator P on H is positive if (Pv,v) > 0 for all v in H.

Example: Let A be any operator on H. Then A*A is positive, because

(A* Av,v) = (Av, Av) > 0.

In fact, every positive operator P has this form for some operator A.

oo
If P is positive, then Z (Pey, er) is in [0, 00] and is independent of the choice

k=1
of orthonormal basis.

Every positive operator P has a positive square root operator v/P. Define
|A] .=V A*A.

Example: Take

—E+% R R
A:
Then
20 12
5 5
A*A =
12 36
5 5
Let
3 _4
5 5
S:
4 3
5 5
Then
1/ 4% (9 0
ss= (3 9),
whence
3 0
\/717*:
S—1(A*A)S (0 2>
and thus
59 12
25 25
|A\:S< S*l(A*A)S> o
12 66
25 25



Define .
LYH) = {A € B(H): Z (|Alek, ex) < oo} :

k=1

The set £1(H) is an ideal in B(H) and is called the ideal of trace-class operators
on H. For Ain £(#H) we can define tr A in the naive way we originally proposed:

trA= Z (Aey, er) .
k=1

Properties of tr:
o tr(A+ B) =trA+tr B for A and B in L}(H);
e tr(AB) = tr(BA) for A in £L(H) and B in B(H);
o tr(SAS™!) =tr A for Ain L}(H) and S in B(H) invertible;
e tr A is the sum of the eigenvalues of A for all A in £L1(H).

Remark: This last statement, known as Lidskii’s theorem, was not proved until
1959.

How do we define the determinant?

For ||A|| < 1, we can define the logarithm of I + A by the infinite series

X 1\yn+1
log(I+A) = Z ( 171 A"
n=1

If A is trace class, then for y € C with sufficiently small modulus, the operator
log(1 + pA) is also trace class, so we can define

det(I + UA) — etr(log(IJruA))
and then extend by analytic continuation, so that the domain of det is
GL(1, (I + LY (H)),

the multiplicative group of invertible elements of B(#) of the form I + L for
some L in L'(H).



Properties of det:
o det(AB) = (det A)(det B) for A and B in GL(1,1 + L1(H));
o det A= = (det A)~! for A in GL(1, (I + LY (H));
o det(SAS™!) =det A for A in GL(1, (I + LY (#H)) and S in B(H) invertible;
e det A is the product of the eigenvalues of A for A in GL(1, 1 + L (H)).
These quantities are hard to compute directly, especially the determinant! How-

ever, in certain cases of geometric and/or topological interest, there are other
ways to proceed.

Example 1:

Suppose K : [a,b] x [a,b] — C is continuous and define A in B(L?[a,b]) by the
formula

b
(Af)(x) = / K(x.9)f(y) dy.

This is an example of a compact operator. It is not always trace class (in fact,
it is an open problem to find necessary and sufficient conditions on K so that
A is trace class), but if A, is trace class, then

b
trA:/ K(z,z)dx.

We can also express det(I + A) in terms of K. For each n-tuple (x1,za,...,2,)
in [a, b], define

K(zy,21) K(zi,m2) -+ K(x1,24)

K(zg,21) K(zo,x2) -+ K(x9,24)
Kn(lfl,l'g,...,xn):det . . . .

K(xnaxl) K(H]‘n,ﬂfg) K(a:n,xn)

Then

© 1 b b
det(I—i—A)—l—i—Zln!/a /a K, (x1,29,...,2,)dxy dxo . .. day,.
n=



Example 2:
Consider the Hilbert space L?(S') with the inner product

2

(f,9) L £(0)g(8) db.

- 2T 0
This Hilbert space has orthonormal basis
{e":nez}={":ncZ}

Let C(S') denote the algebra of continuous complex-valued functions on the
circle. For each ¢ in C(S'), define an operator M, on L?(S') via pointwise
multiplication:

(Mg f)(x) = o(x) f().
Next, let H?(S') be the Hilbert subspace of L?(S') whose orthonormal basis is
{z" :n>0}.

An alternate description of H?(S!) is the Hilbert subspace of the elements of
L?(S1) that extend to analytic functions on the disk {z € C: |z| < 1}.

Define the orthogonal projection P : L*(S') — H?(S!) by

P( i anz"> = ianz”.
n=0

n—=—oo

Then for each ¢ in C(T'), define the Toeplitz operator Ty on H?(S') by the
formula

T, = PM,.
Properties of Toeplitz operators: For ¢ and ¢ in C(S!) and X in C,

® Tory =Ty +1Ty;

L] T>\¢ = /\T¢;
o ID =T5.

Tyy # TyTy in general, but for ¢ and ¢ in C*°(S?), we have
T¢T¢ - TwT¢ € L:l(’H)
Surprisingly (at first), the trace of this quantity can be nonzero. This is be-

cause TyTy and Ty Ty are typically not trace class operators, even though their
difference is.



Example:
T,-3T,s(2")=2"foralln >0

0 0<n<3
2" n>3

Tstzfa (Zn) = {

Therefore
tr (Tzfsta — TZSTZ—S) = 3.

In general,

if =0
0 (TomTon — TonTom) = 4 0T
0 otherwise.

Also observe that

1 2r ) 1 27 . . if =0
— ezmed(emﬂ) = / inezmeemﬂ do = noitm+ n
2wt Jy 2w Jo 0 otherwise.

Theorem: For ¢ and 1 in C>°(S?),

1
tr (T¢T¢ - T’PTii)) = 271'1 /Sl¢d’¢

Proof: Write ¢ and v in terms of the basis {z" : n > 0} and combine the
linearity of the trace and the integral with the computations in the example
above. O

We can generalize this result somewhat. Define
T :={T,+L:¢pcC>(S"),Le L (H*(S")}.
Then there exists a short exact sequence

0 — LY(H%(SY)) T 7 > (S ——> 0,

and the symbol map o : T — C°°(S1) is given by the formula o(T,, + L) = ¢.



Theorem: For T} and 15 in 7°°,

tr (T1T2 — TQTl) = QLT('Z /Sld(Tl)d(U(Tg))

Proof: Write T =Ty, + Ly and T} = Ty, + Lo. Then

tr (VT — ToTh) = tr (T, + L1)(Ty, + L) — (Ty, + L2)(Ty, + L1))
=tr (T¢1T¢2 - T¢72T¢>1 + Ty, Lo — LoTy,
+L1Ty, — Ty,L1 + L1Ly — LoLy)
= tr (T, Ty, — Ty, Ty,) + tx (T, L2 — LoTy,)
+ tr (L1T¢2 - T¢,2L1) + tr (L1L2 - L2L1)
=tr (T¢1 T¢2 - T¢2T¢1)
1
= — d
9 /¢1 b2
1
= — T T5)).
5 | o(T1)d(o(12))
Note that tr (T1Te — T»T}) only depends on the symbols of T7 and T5!
Now let’s look at the determinant.
Suppose ¢, 1 are nowhere-vanishing functions in C°°(S*) and that the winding
numbers of ¢ and ¢ are zero. Then T}, and T}, are invertible (this is a nontrivial
fact!).
Warning;: del # Ty—1 in general!
Note that
o (LTI Tt ) = gyt = 1,
whence Ty Ty T, ' T, " is in I + L' (H?(S")).

det (T, T, T, T ) =27

10



It’s not too hard to prove that the quantity we are taking the determinant of
only depends on the symbols ¢ and . That is, if 71 and 75 are invertible
Toeplitz operators with o(T7) = ¢ and o(T3) = 1, then

det (NTRT T3 ) = det (T, 1,15 'T; ).

Theorem [Campbell-Baker-Hausdorff-Dynkin-- - - ]: Suppose A and B are
operators on H. If [|A]| + || B|| < V2, then (exp A)(exp B) = exp C, where
C= A+ B+ (A B+ A, [4, B] — —[B, 4, B]]
B 21 12070 1207777

+ terms involving higher commutators of A and B.

Corollary:

(exp A)(exp B)(exp(—A))(exp(—B)) =
exp ([A4, B] + terms involving higher commutators of A and B).

Suppose ¢ and 1) are close to 1. Then ¢ = e® and 1) = € for functions o and
B in C>(S'). Note that

Therefore

det <T¢TwT¢_1del) = det (exp(T) exp(Tp) exp(—Tn) exp(—T3))
= detexp (TwI3 — TsT, + higher commutators)
=exptr (ToTs — TpTs + higher commutators)

= exp (217”/51 Oédﬂ)
= exp (217” /S1 log(bd(logw))

B 1 drp
= exp <2m,/8110g¢~w>.

11



Let’s look at this from a different point of view.
Let H be a Hilbert space. Then H"™ is also a Hilbert space:

<(U1,’U2, e a/U’rL)7 (w17w2a e 7wn)> = <’U1,U}1> + <’U2,’U}2> + -+ <Un7wn> .

We can view elements of B(H"™) as elements of M(n, B(H)). By extending the
notion of symbol in the obvious way, we have a short exact sequence

0 ——= LY ((H?(SY))") ———= M(n, T®) —Z— M(n, C>*(S)) ——=0.

Suppose ¢ and v are arbitrary invertible elements of C°°(S!). Then we can find
matrices R and S in GL(3,7°°) such that

¢ 0 0
o(R)=10 o1 0
0 0 1
and
¥ 0 0
cS)y=10 1 0
0 0 ot

For example, we can choose

9Ty — TyTy 1Ty TyTyr—1T1 0
R=| 1-T,.T, Tyn 0
0 0 I

and
2Ty — TyTy—Ty 0 TyTy-— —1
S = 0 I 0
I—Ty-Ty 0 Ty

We infer from the short exact sequence above that the operator RSR™1S™! is
determinant-class. Furthermore, the value of this determinant does not depend
on the choice of R and S satisfying the properties above - the determinant of
RSR~1S~! only depends on ¢ and ).

Suppose that ¢ and 1 are restrictions of meromorphic functions (which we also
denote ¢ and 1) defined in a neighborhood of the closed unit disk such that
neither ¢ nor v has zeros or poles on the unit circle. For each point z in the
open unit disk D, define

m  if ¢ has a zero of order m at z
v(¢,z) =< —m if ¢ has a pole of order m at z

0 if ¢ has neither a zero nor a pole at z,

12



and similarly define v(v, z). The quantity

lim (_1)v(¢,z)v(¢,z) M
w—z (b(u))”(w,z)

is called the tame symbol of ¢ and ¢ at z and is denoted (¢, )..

Example:

3 2
-3
= % double zero at 0, simple zero at 3, simple pole at —1/2
z

2z —1
Y(z) = : 3 simple zero at 1/2, triple pole at 0
z

w — 2
(_1)(2)(—3)M

(¢a¢)0 :ilino w2 (w—3) -3
( 2w—+1 >
_1)2 6(w — 3)3
N G lt) M Cilek)
w—0 wb (2w+1)3
iy P D (w = 3)°
_'w—>0 (2w—|—1)3
=27
(=1)(0) (21”%1)71
)10 = lim -1 S
(&, 9)-1/2 ws—1/2 (=1) (M)O
2w+1
. u)3
= lim
w——1/2 2w — 1
_ 1
16

2w-1)0
((1571/))1/2 = lim (_1)(0)(*1)M

w—1/2 <w2(w_3)>1
2w+1
. 2w+1
= lim ————
w—1/2 w2 (w — 3)
_ 16
5

13



We will not compute (¢, 1)s for reasons that will be become clear in a minute.
For all other complex numbers z, we see that (¢,v), = 1.

Theorem:

det(RSR™'S™") = [[ (¢,9):"

zeD

Remark 1: Suppose that Te and Ty are invertible. Then we can take

T, 0 0
R=(0 T,;' 0
0 0 I
and
T, 0 0
S=(o0o I 0 |,
-1
0 0 T,
whence
T,TyT, ' T, 00
det(RSR™'S™!) = det 0 I 0 =det(T¢T¢T¢_1del).
0 0 I

Remark 2: In fact, det(RSR™1S~!) only depends on the Steinberg symbol {¢, 1}
of ¢ and . This is an element of the algebraic K-theory group Ko(C>(S1)),
and we can use the above theorem to prove that certain Steinberg symbols are
nontrivial.

Surprising fact that comes out of this circle of ideas: if both ¢ and ¢ :=1— ¢
are invertible, then det(RSR~1S~1) = 1.

14



The de la Harpe-Skandalis “Determininant”

Suppose A is a unital Banach algebra with a trace 7 : A — C. Then we can
extend 7 to a trace on M(n, A) in the obvious way.

Let GLg(n, A) denote the connected component of the identity matrix in GL(n, A).
Then given a Cl-path ¢ in GLg(n, A), define

A= (5 [ e ta) =k [ rwen)

21 T omi

Properties of A:

e Suppose that £ = & -& (pointwise product). Then A(¢) = A(&) + A(&);

o If [€(t) — 1]| < 1 for all 0 < ¢ < 1, then

A(6) = o7 (ton(e(1) - 51 Towe(0)):

271
e The value of 3(5 ) only depends on the homotopy class of £ with the end-
points fired;

e Given an idempotent p (i.e, p?> = p) in M(n, A), define &, by the formula
&(t) = e2™'p + (1 — p). Then A(E,) = T(p).

Suppose z is an element of GLg(n, A), choose a C'-path ¢ from 1 to z, and
define A(z) = A(¢).

Problem: A(x) depends on the choice of path &.

What we really have, via the (in)famous Bott periodicity theorem in K-theory,
is a function into C/7(K(A)).

Properties of A:

e A is a group homomorphism;
e A is surjective if and only if 7 is surjective;

o A(eY) =7(y) + 7(Ko(A)) for y in M(n, A).

15



Corollary: Suppose that 7(Ky(A) = Z). Then
exp(2miA) : GLo(n, A) — C*
is a group homomorphism, and
exp(2miA)(e¥) = e™™)
for y in M(n,A). In particular, if A = C and 7 is the identity map, then
exp(2miA) is the usual determinant on M(n,C).
The Fuglede-Kadison-Brown-Hochs-Kaad-Schemaitat Determinant

A von Neumann algebra is a C*-subalgebra of B(H) that is closed in the topology
of pointwise convergence.

Example: L (R)

Suppose we have a “nice” (normal, faithful, semifinite) trace 7 defined on posi-
tive elements in N.

Example: For L>(R), take 7(f) = /00 f(z)dx.

Let £1(N) be the trace ideal. For invertible elements in N of the form 1+ with
x in LY(N), the aforementioned authors define a determinant homomorphism
det, with values in (0, 00):

det-,—(l + J)) _ e‘r(log|1+m|).

This determinant is multiplicative — this is highly nontrivial to show and involves
techniques from algebraic K-theory and Connes’ cyclic homology.

16



Example: Wiener-Hopf Operators

Consider the Hilbert space L?(R). There is a Hilbert subspace H?(R) of L?(R)
that consists of elements that have an analytic extension to the upper half plane,
satisfying a certain growth condition. Let P denote orthogonal projection from
L?(R) onto H?(R).

Let Cp(R) denote the algebra of bounded continuous functions on the real line.
For each ¢ in Cy(R), multiplication by ¢ defines an element of B(L?(R)), and
we can compress to H2(R) just as we did in the circle case to obtain an operator
Wy on B(H?(R)):

Wy = PMy.

The algebra of almost periodic functions on R is the norm-closed subalgebra
of Cy(R) generated by the functions ¢t — €' for A real. This algebra can be
identified with C(Rp), the continuous functions on the Bohr compactification
of R.

Let W be the C*-subalgebra of B(H?(R)) generated {W, : ¢ € C(Rp)}. Then
there is a short exact sequence

0 C W —2—= C(Rp) 0,
where C is the commutator ideal of W. This commutator ideal lives inside, but
is not equal to, the trace ideal associated to a von Neumann trace. Just as in
the circle case, there is a “smooth” version of this short exact sequence:

0 (e W —7 - C®(Rp) — 0.

Theorem: Suppose W7 and W5 in W have symbols ¢ and 1 respectively.
Then

R—o0

1 R
tr (W1W2 - W2W1) = lim <2f{ /_R ¢(t)’¢/(t) dt) .

Theorem: Suppose W7 and W5 in W are invertible, have symbols ¢ and 1)
respectively, and are close to I. Then

R !
det, (WAWLW W) = Jim <exp (22 Re (/_Rlog(¢(t))1z)((;)) dt))) .
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