Introduction to Algebraic Geometry

(Scott Nollet)

The main things algebraic geometers studies are zero sptdyofomials.
Affinevarieties: Letk be a field. (examples ate= R, C, //p~Z, (), ©,.1p) We define
affine n-space as

AR ={a=(ai...,an € k")}
Let {f, } be a collection of polynomials ik[x1, ...,xn]. Let
Z({fa}) = {ae AR : fu(8) = Oforalla }.

Examples:
® Z(y-x2+x), k=A:
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0,ZA-x2-y?) = {(&,2) :abce 7 a%+b? = c?}.
), Z(1 - xP — y9) — algebraic number theory, Fermat’s last theorem
Zo, AR = {10-bit binary number}. If take a finite field extension,. — get applications
in computer science.
Another concrete example: takey — x,y — x2,y—x3,...), k = R Z = {(0,0),(1,1)}

Remark If f, are polynomials, let

| = {Z pa(x)fa(x) P Pa € k[X]}

finite
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Claim: Z({f,}) = Z(I). The set is an ideal ink[X]

Theorem (Hilbert basis theorem, 1899) Every idealkix] is finitely generated. In other
words, there exigby, ..., pr such that

r
I =(91,....0r) = {ij(x)gj(x) YRS k[X]}-
i=1
For example(y — X,y — x2,y —x3,...) = (Y= XX —X?)
Note thatZ(x?°,y) = Z(x,y).
Projective varieties: Projectiven-dimensional space is



Pp = {"lines" through origin inA "}
= {t(ap,...,an) : t € k,(ao,...,an) # (0,...,0}
= A™N{(,...,0}/ ~
where(ay, ...,an) ~ (bo,...,bn) if there existst # 0in k such that
A(a(), cas ,an) = (b(), cas ,bn).
Note that’? is the unit sphere mod the antipodal map. This is not oriéataiote that
S - 2 isa2 - 1 covering map.
On the other hand,? is the set of complex lines in .

Note that’% . is (1, 1) a zero fory — x2? The answer is no, becaude 22 = 0. So it is
hard to find zeros. To fix this problem,

Definition f € k(xo,...,Xn) is homogeneous of degreed if f(x) is the sum of monomials of
degreed.

A projectivevariety is a zero set of a set of homogeneous polynomials. The pdinais
in this case that

f(ag,...,an) =0
if and only if
f(Aao,...,Aan) = A%(ay,...,an) = 0.

One important example of this is :

Example Z(xo) < /}isthe set{(ao,...,a,) : ap = 0}, which can be identified with'[ .
What is left over is a copy of!",
ie{(a #0,a1,....,an) ek} ={L &,.... =) g €k} = {(La,....an) : a €
So/f=/ptuAn,

Example Z(y-x®+x)in A%
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Example Z(y-x3+x)in A3 (previous picture cross)
Example Z(yz? — x® +xz%)in A3,
yz? — x3 + xz?> = 0 makes a cone.
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Example Z(yz? - x® +xz?) in /2, : What happens at infinity? Think of this a&? U /L. At
infinity, this is z = 0, sox® = 0. Actually the ends of the curve are meeting at a single
point. The cube power means that it meets infinity tange®yitching coordinates, the
equation looks like? — x° + xz° = 0in A%. So over the real numbers this is a smooth
curve, but in complex projective space you get a singularity

Recall: A} = k", Z({fi}) = Z(1), fi € K[Xq,...,Xn]

PR ={k™-{0}}/ ~, (ao,...,an) ~ (a0, ..,an)

Back to exampley = x® — x. How do lines intersect the graph? Could be one point, 3
points, 1 ptdouble point, triple point ,

multiplicity of intersection: double point has multipligi2, etc.

y = mx+ bandy = x® — xintersection yield® = x® — (m+ 1)x - b.

If we work over(_, we always have three roots with multiplicity. But we stifi\re
x =constant, which have only one solution, even over

To fix: work in 12, and we always get three points of intersection:

yz? — x3 - xz? = 0, line isax + by + cz = 0. We can always solve this system (eg i 0,
z =...), and we gefAX® + BX?Y + CXY? + DY? = 0.

If A+ 0,thenY = 0 can’t be a solution. Then get
Y3 (A(é)3 +B(2)%+C(2) + D) = 0, so get 3 solutions fo& over (', and thus get 3
points in’2. On the other hand, ik = 0, B # 0, then get two additional solutions, etc. So
counting multiplicity, we always get 3 solutions.Af= B = C = 0. ThenY = Qis a triple
point.

Proposition If X = /£, X = Z(f), k algebraically closed,homogeneous of degreeA line
L < /¢ thatis not contained i satisfiesL N X = d points with multiplicities.

Theorem (Bezout's Theorem) IK = Z(f) /£, deg(f) = d; deg(g) = € Y = Z(g) cc /¢,
f,g relatively prime, therk 'Y = {de points} (with multiplicity).

What is multiplicity of some multiple intersection point@mnstancey = 0 intersects
with y = x® at the origin in a triple point. The idea is that

KXY/ (y,y = x3) = k[x,y]/(y,x®) = k[x]/(x*) has dimensioi. This idea almost
succeeds. Another exampfe: y, g = x> — x Thenk[x,y],/(y,x? — x) is not a field, but
k[x]/(x? — x) has rank2. So the dimension gives a count of the sum of multiplicities.

If you want the multiplicity just at the origin, the trick is:

K[, Y]/ (¥, X% = x) = K[x,y]/ (¥, X(x - 1))

Replacec[x,y] with k[x,y] .., = {5 : f € k[xy],g € (x,y) }, the rational functions. Then

xy)
k [X’ y:| (X’y)
. x(x=1)) "

Another reason thdt} is good to work with. LetX < I’} be the zero set of an ideal
TheHilbert polynomial is

multiplicity = dimy

Hi(m) = dim, (KoL)

wherem means the homogeneous degnepiece. Interesting fact:

Theorem (Hilbert) There exists a polynomi&l(z) € <Jz] such thaHx(m) = P(m) for
m >> 0. ( Pis called the Hilbert polynomial oX)



Example:if | = (0), X = 'f. We havek[xo, ... ,X2], = k constantsk[Xo, ... ,X2], has

dim 3. dimy (XLes=* Y — @, dim, (X2exlY  — 10, SoP(z) = 2D
! 2 ! 3 2

Geometrically, these Hilbert polynomials are good for cating invariants:

dimc(X) = deg(Px(2)) =r

deg(X) = (leading coefficienjr!

Interpretation: suppose thdt— I'f is a curve. Themleg(X) =the number of points in
XN H, whereH is given by one linear equation.

If dim(X) = 1, thenPx(0) — 1 = dim(Q¢), the dimension of holomorphic differential
forms.



