
Introduction to Algebraic Geometry

(Scott Nollet)
The main things algebraic geometers studies are zero sets ofpolynomials.
Affine varieties: Let k be a field. (examples arek = R, C, Z╱pZ, Q, Qp,Fp) We define

affinen-space as

Ak
n = a = a1, . . . ,an ∈ kn 

Let fα be a collection of polynomials inkx1, . . . ,xn . Let

Zfα = a ∈ Ak
n : fαa = 0 for all α .

Examples:
● Zy − x3 + x, k = R:
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● k = Q, Z1 − x2 − y2  =  a
c , b

c  : a, b, c ∈ Z, a2 + b2 = c2 .
● k = Q, Z1 − xp − yq  — algebraic number theory, Fermat’s last theorem
● k = Z2, Ak

10 = 10-bit binary numbers. If take a finite field extensionF210 – get applications
in computer science.

Another concrete example: takeZy − x,y − x2,y − x3, . . ., k = R Z = 0,0,1,1

Remark If fα are polynomials, let

I = ∑
finite

pαxfαx : pα ∈ kx .

Claim: Zfα = ZI. The setI is an ideal inkx

Theorem (Hilbert basis theorem, 1899) Every ideal inkx is finitely generated. In other
words, there existp1, . . . , pr such that

I = g1, . . . , gr  = ∑
j=1

r

p jxg jx : p j ∈ kx .

For example,y − x, y − x2, y − x3, . . .  = y − x, x − x2 

Note thatZx20, y = Zx, y.

Projective varieties: Projectiven-dimensional space is

1



Pk
n = "lines" through origin inAk

n+1

= ta0, . . . ,an  : t ∈ k,a0, . . . ,an  ≠ 0, . . . ,0

= A
n+1  0, . . . ,0╱ ∼

wherea0, . . . ,an  ∼ b0, . . . ,bn  if there existsλ ≠ 0 in k such that
λa0, . . . ,an  = b0, . . . ,bn .

Note thatPR
2 is the unit sphere mod the antipodal map. This is not orientable. Note that

S2 → PR
2 is a2 − 1 covering map.

On the other hand,PC
2 is the set of complex lines inC2.

Note thatPR
1 . is 1,1 a zero fory − x2? The answer is no, because2 − 22 ≠ 0. So it is

hard to find zeros. To fix this problem,

Definition f ∈ kx0, . . . , xn  is homogeneous of degree d if fx is the sum of monomials of
degreed.

A projective variety is a zero set of a set of homogeneous polynomials. The point isthat
in this case that

fa0, . . . ,an  = 0

if and only if

fλa0, . . . ,λan  = λdfa0, . . . ,an  = 0.

One important example of this is :

Example Zx0  ⊂ Pk
n is the seta0, . . . , an  : a0 = 0, which can be identified withPk

n−1.
What is left over is a copy ofAn,
i.e.a0 ≠ 0, a1, . . . , an  : a j ∈ k = 1, a1

a0
, . . . , an

a0
 : a j ∈ k = 1, a1, . . . , an  : a j ∈

SoPk
n = Pk

n−1 ∪ A
n.

Example Zy − x3 + x in AR
2
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Example Zy − x3 + x in AR
3 (previous picture crossR)

Example Zyz2 − x3 + xz2  in AR
3

yz2 − x3 + xz2 = 0 makes a cone.

z = x3

y+x
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Example Zyz2 − x3 + xz2  in PR
2 : What happens at infinity? Think of this asAR

2 ∪ PR
1 . At

infinity, this is z = 0, sox3 = 0. Actually the ends of the curve are meeting at a single
point. The cube power means that it meets infinity tangently. Switching coordinates, the
equation looks likez2 − x3 + xz3 = 0 in AR

2 . So over the real numbers this is a smooth
curve, but in complex projective space you get a singularity.

Recall:Ak
n = kn , Zf i = ZI, f i ∈ kx1, . . . ,xn 

Pk
n = kn+1 − 0 ╱ ∼, a0, . . . ,an  ∼ λa0, . . . ,an 

Back to example:y = x3 − x. How do lines intersect the graph? Could be one point, 3
points, 1 pt+double point, triple point ,

multiplicity of intersection: double point has multiplicity 2, etc.
y = mx + b andy = x3 − x intersection yields0 = x3 − m + 1x − b.
If we work overC, we always have three roots with multiplicity. But we still have

x =constant, which have only one solution, even overC.
To fix: work in PC

2 , and we always get three points of intersection:
yz2 − x3 − xz2 = 0, line isax + by + cz = 0. We can always solve this system (eg ifc ≠ 0,

z =. . .), and we getAX3 + BX2Y + CXY2 + DY3 = 0.
If A ≠ 0, thenY = 0 can’t be a solution. Then get

Y3 A X
Y 

3
+ B X

Y 
2
+ C X

Y  + D = 0, so get 3 solutions forXY overC, and thus get 3

points inPC
3 . On the other hand, ifA = 0, B ≠ 0, then get two additional solutions, etc. So

counting multiplicity, we always get 3 solutions. IfA = B = C = 0. ThenY = 0 is a triple
point.

Proposition If X ⊂ Pk
2, X = Zf, k algebraically closed,f homogeneous of degreed. A line

L ⊂ Pk
2 that is not contained inX satisfiesL ∩ X = d points with multiplicities.

Theorem (Bezout’s Theorem) IfX = Zf ⊂ Pk
2, degf = d; degg = e; Y = Zg ⊂⊂ Pk

2,
f, g relatively prime, thenX ∩ Y = de points (with multiplicity).

What is multiplicity of some multiple intersection point? For instancey = 0 intersects
with y = x3 at the origin in a triple point. The idea is that

kx,y╱y,y − x3 ≅ kx,y╱y,x3 ≅ kx╱x3 has dimension3. This idea almost
succeeds. Another example:f = y, g = x2 − x Thenkx,y╱y,x2 − x is not a field, but
kx╱x2 − x has rank2. So the dimension gives a count of the sum of multiplicities.

If you want the multiplicity just at the origin, the trick is:

kx,y╱y,x2 − x = kx,y╱y,xx − 1

Replacekx,y with kx,yx,y =
f
g : f ∈ kx,y,g ∈ x,y , the rational functions. Then

multiplicity = dimk
kx,yx,y

y,xx − 1
.

Another reason thatPk
n is good to work with. LetX ⊂ Pk

n be the zero set of an idealI.
TheHilbert polynomial is

Hkm = dimk
kx0, . . . ,xn 

I m
,

wherem means the homogeneous degreem piece. Interesting fact:

Theorem (Hilbert) There exists a polynomialPz ∈ Qz such thatHXm = Pm for
m >> 0. ( P is called the Hilbert polynomial ofX)
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Example: if I = 0, X = Pk
2. We havekx0, . . . ,x20 = k constants;kx0, . . . ,x21 has

dim 3. dimk
kx0,...,xn 

I 2
= 6, dimk

kx0,...,xn 
I 3

= 10. SoPz =
z+1z+2

2
.

Geometrically, these Hilbert polynomials are good for computing invariants:
dimCX = degPXz = r
degX = leading coefficient r!
Interpretation: suppose thatX ⊂ Pk

3 is a curve. ThendegX =the number of points in
X ∩ H, whereH is given by one linear equation.

If dimX = 1, thenPX0 − 1 = dimΩC , the dimension of holomorphic differential
forms.
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