Introduction to Algebraic Geometry

(Scott Nollet)

The main things algebraic geometers studies are zero sets of polynomials.

Affine varieties: Let **k** be a field. (examples are $\mathbf{k} = \mathbb{R}$, \mathbb{C} , $\mathbb{Z}/p\mathbb{Z}$, \mathbb{Q} , \mathbb{Q}_p , \mathbb{F}_p) We define affine *n*-space as

$$A_{\mathbf{k}}^{n} = \{ \bar{a} = (a_{1}, \ldots, a_{n} \in \mathbf{k}^{n}) \}$$

Let $\{f_{\alpha}\}$ be a collection of polynomials in $\mathbf{k}[x_1, \dots, x_n]$. Let

$$Z({f_{\alpha}}) = \left\{ \overline{a} \in A_{\mathbf{k}}^{n} : f_{\alpha}(\overline{a}) = 0 \text{ for all } \alpha \right\}.$$

- $k = Q, Z(1 x^2 y^2) = \left\{ \left(\frac{a}{c}, \frac{b}{c}\right) : a, b, c \in \mathbb{Z}, a^2 + b^2 = c^2 \right\}.$
- $k = Q, Z(1 x^p y^q)$ algebraic number theory, Fermat's last theorem
- $\mathbf{k} = Z_2$, $\hat{A}_k^{10} = \{10\text{-bit binary numbers}\}$. If take a finite field extension $F_{2^{10}}$ get applications in computer science.

Another concrete example: take $Z(y - x, y - x^2, y - x^3, ...)$, $\mathbf{k} = \mathbb{R} Z = \{(0, 0), (1, 1)\}$

Remark If f_{α} are polynomials, let

$$I = \left\{ \sum_{\text{finite}} p_{\alpha}(\bar{x}) f_{\alpha}(\bar{x}) : p_{\alpha} \in \boldsymbol{k}[\bar{x}] \right\}.$$

Claim: $Z({f_{\alpha}}) = Z(I)$. The set *I* is an ideal in $k[\bar{x}]$

Theorem (Hilbert basis theorem, 1899) Every ideal in $k[\bar{x}]$ is finitely generated. In other words, there exist p_1, \ldots, p_r such that

$$I = (g_1, \ldots, g_r) = \left\{ \sum_{j=l}^r p_j(\bar{x}) g_j(\bar{x}) : p_j \in \boldsymbol{k}[\bar{x}] \right\}.$$

For example, $(y - x, y - x^2, y - x^3, ...) = (y - x, x - x^2)$

Note that $Z(x^{20}, y) = Z(x, y)$.

Projective varieties: Projective *n*-dimensional space is

 $P_{\mathbf{k}}^{n} = \left\{ \text{"lines" through origin in } A_{\mathbf{k}}^{n+1} \right\}$ $= \left\{ t(a_{0}, \dots, a_{n}) : t \in \mathbf{k}, (a_{0}, \dots, a_{n}) \neq (0, \dots, 0) \right\}$ $= A^{n+1} \smallsetminus \left\{ (0, \dots, 0) \right\} \nearrow$

where $(a_0, \ldots, a_n) \sim (b_0, \ldots, b_n)$ if there exists $\lambda \neq 0$ in **k** such that $\lambda(a_0, \ldots, a_n) = (b_0, \ldots, b_n)$.

Note that $\mathbb{P}^2_{\mathbb{R}}$ is the unit sphere mod the antipodal map. This is not orientable. Note that $S^2 \to \mathbb{P}^2_{\mathbb{R}}$ is a 2 – 1 covering map.

On the other hand, P_C^2 is the set of complex lines in C^2 .

Note that $\mathbb{P}^1_{\mathbb{R}}$. is (1, 1) a zero for $y - x^2$? The answer is no, because $2 - 2^2 \neq 0$. So it is hard to find zeros. To fix this problem,

Definition $f \in k(x_0, ..., x_n)$ is homogeneous of degree *d* if f(x) is the sum of monomials of degree *d*.

A **projective variety** is a zero set of a set of homogeneous polynomials. The point is that in this case that

$$f(a_0,\ldots,a_n)=0$$

if and only if

$$f(\lambda a_0,\ldots,\lambda a_n) = \lambda^d f(a_0,\ldots,a_n) = 0.$$

One important example of this is :

Example $Z(x_0) \subset P_k^n$ is the set $\{(a_0, \ldots, a_n) : a_0 = 0\}$, which can be identified with P_k^{n-1} . What is left over is a copy of A^n , i.e. $\{(a_0 \neq 0, a_1, \ldots, a_n) : a_j \in k\} = \{(1, \frac{a_1}{a_0}, \ldots, \frac{a_n}{a_0}) : a_j \in k\} = \{(1, a_1, \ldots, a_n) : a_j \in S_0 \cap P_k^n = P_k^{n-1} \cup A^n$.

Example $Z(y - x^3 + x)$ in A_R^2

Example $Z(y - x^3 + x)$ in A_R^3 (previous picture cross R)

Example $Z(yz^2 - x^3 + xz^2)$ in A_R^3

 $yz^2 - x^3 + xz^2 = 0$ makes a cone. $z = \frac{x^3}{y+x}$ **Example** $Z(yz^2 - x^3 + xz^2)$ in P_R^2 : What happens at infinity? Think of this as $A_R^2 \cup P_R^1$. At infinity, this is z = 0, so $x^3 = 0$. Actually the ends of the curve are meeting at a single point. The cube power means that it meets infinity tangently. Switching coordinates, the equation looks like $z^2 - x^3 + xz^3 = 0$ in A_R^2 . So over the real numbers this is a smooth curve, but in complex projective space you get a singularity.

Recall: $A_{\mathbf{k}}^{n} = \mathbf{k}^{n}$, $Z(\{f_{i}\}) = Z(I)$, $f_{i} \in \mathbf{k}[x_{1}, \dots, x_{n}]$ $\mathbb{P}_{\mathbf{k}}^{n} = \{\mathbf{k}^{n+1} - \{0\}\} \neq \sim, (a_{0}, \dots, a_{n}) \sim \lambda(a_{0}, \dots, a_{n})$

Back to example: $y = x^3 - x$. How do lines intersect the graph? Could be one point, 3 points, 1 pt+double point, triple point,

multiplicity of intersection: double point has multiplicity 2, etc.

y = mx + b and $y = x^3 - x$ intersection yields $0 = x^3 - (m+1)x - b$.

If we work over C, we always have three roots with multiplicity. But we still have x =constant, which have only one solution, even over C.

To fix: work in P_C^2 , and we always get three points of intersection:

 $yz^2 - x^3 - xz^2 = 0$, line is ax + by + cz = 0. We can always solve this system (eg if $c \neq 0$, z = ...), and we get $AX^3 + BX^2Y + CXY^2 + DY^3 = 0$.

If $A \neq 0$, then Y = 0 can't be a solution. Then get $Y^3\left(A\left(\frac{X}{Y}\right)^3 + B\left(\frac{X}{Y}\right)^2 + C\left(\frac{X}{Y}\right) + D\right) = 0$, so get 3 solutions for $\frac{X}{Y}$ over C, and thus get 3 points in $\mathbb{P}^3_{\mathbb{C}}$. On the other hand, if $A = 0, B \neq 0$, then get two additional solutions, etc. So counting multiplicity, we always get 3 solutions. If A = B = C = 0. Then Y = 0 is a triple point.

Proposition If $X \subset P_k^2$, X = Z(f), **k** algebraically closed, f homogeneous of degree d. A line $L \subset P_k^2$ that is not contained in X satisfies $L \cap X = d$ points with multiplicities.

Theorem (Bezout's Theorem) If $X = Z(f) \subset P_k^2$, deg(f) = d; deg(g) = e; $Y = Z(g) \subset C_k^2$, f, g relatively prime, then $X \cap Y = \{ de \text{ points} \}$ (with multiplicity).

What is multiplicity of some multiple intersection point? For instance y = 0 intersects with $y = x^3$ at the origin in a triple point. The idea is that

 $\mathbf{k}[x,y]/(y,y-x^3) \cong \mathbf{k}[x,y]/(y,x^3) \cong \mathbf{k}[x]/(x^3)$ has dimension 3. This idea almost succeeds. Another example: f = y, $g = x^2 - x$ Then $k[x, y]/(y, x^2 - x)$ is not a field, but $k[x]/(x^2 - x)$ has rank 2. So the dimension gives a count of the sum of multiplicities.

If you want the multiplicity just at the origin, the trick is:

$$\mathbf{k}[x,y]/(y,x^2-x) = \mathbf{k}[x,y]/(y,x(x-1))$$

Replace $\mathbf{k}[x, y]$ with $\mathbf{k}[x, y]_{(x,y)} = \left\{ \frac{f}{g} : f \in \mathbf{k}[x, y], g \in (x, y) \right\}$, the rational functions. Then

multiplicity = dim_k
$$\frac{\mathbf{k}[x, y]_{(x,y)}}{(y, x(x-1))}$$

Another reason that $\mathbb{P}_{\mathbf{k}}^{n}$ is good to work with. Let $X \subset \mathbb{P}_{\mathbf{k}}^{n}$ be the zero set of an ideal *I*. The Hilbert polynomial is

$$H_{\mathbf{k}}(m) = \dim_{\mathbf{k}}\left(\frac{\mathbf{k}[x_0,\ldots,x_n]}{I}\right)_m,$$

where *m* means the homogeneous degree *m* piece. Interesting fact:

Theorem (Hilbert) There exists a polynomial $P(z) \in Q[z]$ such that $H_X(m) = P(m)$ for m >> 0. (*P* is called the Hilbert polynomial of *X*)

Example: if I = (0), $X = \mathbb{P}_{\mathbf{k}}^2$. We have $\mathbf{k}[x_0, \dots, x_2]_0 = k$ constants; $\mathbf{k}[x_0, \dots, x_2]_1$ has dim 3. dim_k $\left(\frac{\mathbf{k}[x_0, \dots, x_n]}{I}\right)_2 = 6$, dim_k $\left(\frac{\mathbf{k}[x_0, \dots, x_n]}{I}\right)_3 = 10$. So $P(z) = \frac{(z+1)(z+2)}{2}$.

Geometrically, these Hilbert polynomials are good for computing invariants: $\dim_{\mathbb{C}}(X) = deg(P_X(z)) = r$ deg(X) = (leading coefficient)r!

Interpretation: suppose that $X \subset \mathbb{P}^3_k$ is a curve. Then deg(X) =the number of points in $X \cap H$, where *H* is given by one linear equation.

If dim(X) = 1, then $P_X(0) - 1 = \dim(\Omega_C)$, the dimension of holomorphic differential forms.