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The lectures were based on an old unpublished manuscript of mine, “Quantum motion
on symmetric spaces of non-positive curvature”. Let (M™,g) be a complete Riemannian
manifold. By analogy with the dichotomy between Newtonian and quantum mechanics,
the “classical motion” on M is the dynamics given by moving along geodesics, whereas
the “quantum motion” is given by solving the Schrodinger equation
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relative to the unique self-adjoint extension H of A|C§°(M™) in L?*(M™), where A is the
intrinsic Laplacian associated to g.

We would like to investigate to what extent one can realize the naive expectation that
if the classical motion is “free”, i.e. any geodesic spends only a finite time on a given
compact set K C M", then the quantum motion is also “free”. The latter means that
the expected time
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that a normalized state ¥ € L*(M) remains in K should be finite.

It is elementary to show that the classical motion is free if M™ carries a strictly convex
function. Somewhat surprisingly, it turns out that under suitable additional assumptions
on the convex function the quantum motion is free as well, i.e. the integral (0.1) is finite.
This is much harder, and the necessary technical machinery comes from scattering theory.
In both cases, one obtains quite explicit estimates for the occupation time in K, in terms
of certain quantities associated to K and the convex function.

Studying when the motion is “free” (both in the classical and quantum senses) is more
than a mere pseudo-physical curiosity, as the resulting estimates can be used to prove that
the Laplacian has no singular spectrum, and also to establish the existence of spectrally
stable Riemannian manifolds.

The latter concept, which I introduced in the aforementioned manuscript, means that
the Laplacians associated to the nearby metrics are all unitarily equivalent. This is a new
phenomenon, which never occurs for compact manifolds.

Ordinarily, one studies a Riemannian manifold in an “inward” way, looking at its cur-
vature and how it relates to the topology and analysis of the manifold, etc. In Riemannian



spectral stability the point of view is different: one is interested in how “neighborly” the
manifold is, in the sense that the metric should be indistinguishable, from the point of
view of the L? theory of A, from its neighbors.

The central geometric result thus far (obtained in collaboration with H. Donnelly,
Math. Z, 2006) states that all globally symmetric spaces of non-compact type are spec-
trally stable. It has been many years since I have worked on this topic, but there are still
several interesting open problems (see the list below).

Due to the inherent instability of the singular spectrum (at least from an abstract
operator-theoretic point of view), the central issue in the theory of Riemannian spectral
stability is to show that the spectral measures of the Laplacian are absolutely continuous.
In our context, this is accomplished using a certain integral identity involving strictly con-
vex functions f for which the biLaplacian of f satisfies A2f < 0. The general framework
of scattering theory (wave operators, Kato’s theory of H-smooth perturbations, positive
commutators, the Kato-Birman theory, etc.) can in principle be applied, but the heart of
the matter is to construct convex functions with certain additional properties, and this is
where finer aspects of Riemannian geometry come into play.

Although I didn’t lecture on this, similar ideas can also be applied to a problem in the
interface of ergodic theory and the geodesic flow of compact manifolds of negative cur-
vature (see our joint work with V. Nitica: Schrodinger operators and topological pressure
on manifolds of negative curvature, Proc. Symposia of AMS, Smooth ergodic theory and
Applications, edited by A. Katok, vol. 69, 2001).

1 Open problems in Riemannian spectral stability

Problem 1. Show that if (M, go) is spectrally stable, then the self-adjoint realization
Hy, of A, has to be absolutely continuous. For abstract operators, in the presence
of singular spectrum even rank one perturbations can yield a non-unitarily equivalent
operator. But it is not clear, assuming that H, has some singular spectrum, how to
perturb Hy, through Laplacians of metrics in order to obtain an H, that is not unitarily
equivalent to Hy,. A positive solution to this problem would imply, via the Kato-Birman
theory, a most satisfying criterion for Riemannian spectral stability: (M, go) is spectrally
stable if and only if H, is absolutely continuous whenever g = gy or g is sufficiently close
to go (persistence of absolute continuity), in a suitable Whitney topology in the space of
Riemannian metrics.

Problem 2. Compact manifolds are certainly unstable. Must the same be true if (M, g)
is complete and has finite volume? Notice that 0 is a persistent eigenvalue.

Problem 3. If (M, g) is the universal cover of a compact manifold of negative curvature,
does it support a strictly convex solution of Af =17 An affirmative answer would show
that H, is absolutely continuous and, most likely, that (M, g) is spectrally stable. This
kind of question is potentially relevant in the approach to the Chern-Hopf conjecture



(namely, that (—1)"y(M?") > 0 should hold whenever the compact manifold M?" carries
a metric of negative sectional curvature) based on Atyiah’s L? index theorem (see, e.g.,
Donnelly-Xavier, Amer. J. Math. (1984); Gromov, JDG (1991); Cao-Xavier, Math. Ann.
(2001); Jost-Zuo, Comm. Anal. Geom (2000)). Notice that the notion of Riemannian
spectral stability is, of course, meaningful for the L? Laplacian acting on differential forms
as well.

Problem 4. Keeping in mind the heuristics behind classical versus quantum free mo-
tion, is it true that every spectrally unstable complete manifold must have a “recurrent”
geodesic, i.e. one that visits some compact set infinitely often, along a sequence of times
tending to infinity?

Problem 5. a) Classify the unitary equivalence classes of spectrally stable complete
Riemannian manifolds. b) Does every such class contain a globally symmetric space of
non-positive curvature (including the ones that contain flat factors)?

Problem 6. In the presence of a smooth potential V', most the ideas discussed in the talks
work for the Schrodinger operator A4V as well. In fact, they provide a “coordinate-free”
approach to Lavine’s theorem on repulsive interactions in quantum mechanics (see Reed
and Simon’s “Methods of Modern Mathematical Physics”, vol.4, p.159). Can Lavine’s
theorem be improved so that whenever the Newtonian motion 2”7 = —VV is free (and
not just when 88—‘7{ < 0), then the quantum motion is also free, i.e. (0.1) holds? Here
our manifold is R”, n > 3, and we assume the existence of a Lyapunov function in the
phase space R" x R" for 2 = —VV. It is unclear whether such a grand generalization
would further one’s understanding of the physics underlying the transition from classical
to quantum mechanics, but from a purely mathematical standpoint the aesthetic appeal

would be undeniable.



