Polynomial Coverings

GAGA Seminar

Fall 2023

Let *E* and *X* be topological spaces and suppose $p: E \to X$ is a continuous surjection. An open subset *U* of *X* is *evenly covered* by *p* if $p^{-1}(U)$ is the disjoint union of a collection $\{V_{\alpha}\}_{\alpha \in A}$ of open subsets of *E* with the property that for each α in the index set *A*, the restriction of *p* to V_{α} is a homeomorphism from V_{α} to *U*.

If every point of X has a neighborhood that is evenly covered by p, then p is a *covering map* and that E is a *covering space* of X.

Example

For any nonempty topological space X and nonempty set A,

$$\pi: X \times A \to X,$$

where π is projection, is a covering map.

Suppose that $p: E \to X$ and $p': E' \to X$ are covering maps. We say that E and E' are *equivalent* covering spaces if there exists a homeomorphism $h: E \to E'$ that makes the following diagram commute.

We say $p: E \rightarrow X$ is *trivial* if it is equivalent to our first example

 $\pi: X \times A \to X.$

We say $p: E \to X$ is a *finite* cover if $p^{-1}(x)$ is a finite set for each x in X.

Example

Let X be a connected and locally path connected topological space, and let C(X) be the ring of continuous complex-valued functions on X. A Weierstrass polynomial is a monic element of $C(X)[\lambda]$:

$$P(x,\lambda) = \lambda^n + \sum_{i=1}^n a_i(x)\lambda^{n-i}$$

If $P(x, \lambda)$ has distinct zeros for each x in X, we call $P(x, \lambda)$ a *simple* Weierstrass polynomial.

Example

For any X and any natural number n,

$$P(x,\lambda) = (\lambda - 1)(\lambda - 2) \cdots (\lambda - n)$$

is a simple Weierstrass polynomial of degree n over X.

Example

$$P(z,\lambda)=\lambda^n-z$$

is a simple Weierstrass polynomial of degree n over S^1 .

Example

$$P((x, y, z), \lambda) = \lambda^2 - 2(x^2 + y^2 + iz^2)\lambda + 4i(x^2 + y^2)z^2$$

is a simple Weierstrass polynomial of degree 2 over S^2 .

Let $P(x, \lambda)$ be a simple Weierstrass polynomial of degree n > 1over X. Let

$$E = \{(x, \lambda) \in X \times \mathbb{C} : P(x, \lambda) = 0\},\$$

and define $p: E \to X$ to be the restriction of the projection map $\pi: X \times \mathbb{C} \to X$. We call (E, p) the *n*-fold polynomial covering space associated to $P(x, \lambda)$.

$$P(z,\lambda) = \lambda^2 - z \in C(S^1)[\lambda]$$

Question

Is every finite covering space (equivalent to) a polynomial covering space?

Answer: No.

Question

Can we characterize which finite covering spaces are (equivalent to) a polynomial covering space?

Answer: Yes.

Let n > 1 be a natural number. The *discriminant set* of \mathbb{C}^n is

$$\Delta = \{(a_1, a_2, \dots, a_n) \in \mathbb{C}^n : P(\lambda) = \lambda^n + \sum_{i=1}^n a_i \lambda^{n-i}$$

does not have distinct zeros}.

Let *n* be a natural number. The *elementary symmetric polynomials* in the variables x_1, x_2, \ldots, x_n are defined to be

$$s_{1}(x_{1}, x_{2}, \dots, x_{n}) = x_{1} + x_{2} + \dots + x_{n}$$

$$s_{2}(x_{1}, x_{2}, \dots, x_{n}) = \sum_{1 \le i < j \le n} x_{i}x_{j}$$

$$\vdots$$

$$s_{n}(x_{1}, x_{2}, \dots, x_{n}) = x_{1}x_{2} \cdots x_{n}$$

Theorem

Every symmetric polynomial in n variables can be uniquely written as a polynomial in the elementary symmetric polynomials.

Example

$$x_1^2 + x_2^2 + \cdots + x_n^2 = (s_1(x_1, x_2, \dots, x_n))^2 - 2s_2(x_1, x_2, \dots, x_n)$$

Let δ be the unique polynomial in n>1 variables satisfying the equation

$$\prod_{1 \leq i < j \leq n} (x_i - x_j)^2 = \delta(-s_1(x_1, \ldots, x_n), s_2(x_1, \ldots, x_n), \ldots (-1)^n s_n(x_1, \ldots, x_n)).$$

The polynomial $\delta(a_1, a_2, ..., a_n)$ is called the *discriminant* polynomial in the variables $a_1, a_2, ..., a_n$. For a monic polynomial

$$P(\lambda) = \lambda^n + \sum_{i=1}^n a_i \lambda^{i-1}$$

in $\mathbb{C}[\lambda]$, the complex number $\delta(a_1, a_2, \ldots, a_n)$ is called the *discriminant* of $P(\lambda)$.

$$\delta(a_1,a_2)=a_1^2-4a_2$$

$$\delta(a_1, a_2, a_3) = a_1^2 a_2^2 - 4a_2^3 - 4a_1^3 a_3 + 18a_1a_2a_3 - 27a_3^2$$

$$\begin{split} \delta(a_1, a_2, a_3, a_4) &= 256a_4^3 - 192a_1a_3a_4^2 - 128a_2^2a_4^2 + 144a_2a_3^2a_4 - 27a_3^4 \\ &+ 144a_1^2a_2a_4^2 - 6a_1^2a_3^2a_4 - 80a_1a_2^2a_3a_4 + 18a_1a_2a_2a_4^3 + 16a_2^4a_4 \\ &- 4a_2^3a_3^2 - 27a_1^4a_4^2 + 18a_1^3a_2a_3a_4 - 4a_1^3a_3^3 - 4a_1^2a_2^3a_4 + a_1^2a_2^2a_3^2 \end{split}$$

Theorem

Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be the roots of

$$P(\lambda) = \lambda^n + \sum_{i=1}^n a_i \lambda^{n-i},$$

counted with multiplicity. Then for

$$a_i = (-1)^i s_i(\alpha_1, \alpha_2, \ldots, \alpha_n),$$

whence

$$\delta(\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n) = \prod_{1 \leq i < j \leq n} (\alpha_i - \alpha_j)^2.$$

Corollary

$$(\mathsf{a}_1,\mathsf{a}_2,\ldots,\mathsf{a}_n)\in\Delta$$
 if and only if $\delta(\mathsf{a}_1,\mathsf{a}_2,\ldots,\mathsf{a}_n)=0$

Corollary

For each natural number n > 1, the discriminant set Δ is an algebraic variety of complex codimension one in \mathbb{C}^n .

Corollary

The complement B^n of the discriminant set in \mathbb{C}^n is a connected and locally path-connected open subset of \mathbb{C}^n .

The canonical Weierstrass polynomial over B^n is

$$P^{n}((a_{1}, a_{2}, \ldots, a_{n}), \lambda) = \lambda^{n} + \sum_{i=1}^{n} a_{i}\lambda^{n-1},$$

and the associated *n*-fold polynomial covering map $p^n : E^n \to B^n$ is called the *canonical n-fold polynomial covering map*.

Let $p: E \rightarrow X$ be an *n*-fold polynomial covering map associated with the simple Weierstrass polynomial

$$P(x,\lambda) = \lambda^n + \sum_{i=1}^n a_i(x)\lambda^{n-i}$$

over X. The coefficient functions $a_i(x)$ of $P(x, \lambda)$ determine a map

$$a = (a_1, a_2, \ldots, a_n) : X \rightarrow B^n$$

called the *coefficient map* of $P(x, \lambda)$ and the polynomial covering map $p : E \to X$.

In this case, we will often write $P_a(x, \lambda)$ and $p_a: E_a \to X$.

$$a^*(E^n) = \left\{ \left(x, \left((a_1, a_2, \dots, a_n), \lambda \right) \right) \in X \times E^n : p^n \left((a_1, a_2, \dots, a_n), \lambda \right) = a(x) \right\}$$

$$\begin{array}{c} a^*(E^n) \xrightarrow{a^*} E^n \\ (p^n)^* \downarrow \qquad \qquad \qquad \downarrow^p \\ X \xrightarrow{a} B^n \end{array}$$

Theorem

Define $h: E_a \rightarrow a^*(E^n)$ by the formula

$$h(x,\lambda) = (x, ((a_1(x), a_2(x), \ldots, a_n(x)), \lambda)).$$

Then we have an equivalence of covering maps over X:

Theorem (Pullback Criterion)

A n-fold covering map $p: E \to X$ is equivalent to a polynomial covering map if and only if it is equivalent to the pullback of the canonical n-fold covering map $p^n: E^n \to B^n$.

We say that a finite covering map $p: E \to X$ can be imbedded in the trivial complex line bundle $X \times \mathbb{C}$ over X if there exists an imbedding $f: E \to X \times \mathbb{C}$ such that the diagram

commutes.

Without loss of generality, we may assume that *E* is a subset of $X \times \mathbb{C}$ and that *p* is the restriction of the projection π to *E*.

Theorem (Imbedding Criterion)

A finite covering map $p: E \to X$ is equivalent to a polynomial covering map if and only if it admits an imbedding into the trivial line bundle over X.

Proof.

 (\Longrightarrow) By its very definition, a polynomial covering map imbeds into $X \times \mathbb{C}$.

(\Leftarrow) Let $p : E \to X$ be an *n*-fold covering map that imbeds into $X \times \mathbb{C}$, and view *E* as a subset of $X \times \mathbb{C}$. Define

$$P(x,\lambda) = \prod_{(x,\lambda_x)\in p^{-1}(x)} (\lambda - \lambda_x).$$

Then $P(x, \lambda)$ is a simple Weierstrass polynomial, and the local triviality of E implies that the coefficient functions $a_i : X \to \mathbb{C}$ are continuous. The covering map $p : E \to X$ is the polynomial covering map associated to $P(x, \lambda)$.

Example

$$p:S^1 \to \mathbb{R}P^1$$

This is the nontrivial double cover of the circle, which is equivalent to the polynomial cover associated to $\lambda^2 - z$.

To construct nonexamples, we need to talk about braids.

Let $n \ge 2$. The braid group on n strands is denoted by B_n and is the group with generators $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$ and relations

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \quad \text{for all } i$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i \quad \text{for all } |i-j| > 1$$

Theorem

 B_n is torsion-free.

Idea of Proof.

The map that sends each generator σ_i to 1 defines a homomorphism from B_n to \mathbb{Z} , and \mathbb{Z} is torsion-free.

Theorem

 $\pi_1(B^n) \cong B(n)$

Theorem

Suppose that $\pi_1(X)$ is a torsion group; i.e., every group element has finite order. Then every polynomial covering of X is trivial.

Corollary

For $n \ge 2$, the quotient map $\pi : S^n \to \mathbb{R}P^n$ is not equivalent to a polynomial covering map.

On the other hand,

Theorem

Suppose that $\pi_1(X)$ is a free group. Then every finite covering map is equivalent to a polynomial covering map.

Corollary

Every finite cover of S^1 is equivalent to a polynomial covering map.

One more example for the geometric topologists!

Lemma

Let T_g be a closed orientable surface of genus g, viewed as a subset of \mathbb{R}^3 that is symmetric with respect to the origin. There exists a continuous map $f : T_g \to \mathbb{C}$ with the property that $f(x) \neq f(-x)$ for all x in T_g if and only if g is odd.

Theorem

Let U_g be a closed nonorientable surface of genus g. The orientation double cover $\pi : T_g \to U_{g+1}$ is equivalent to a polynomial cover if and only if g is odd.

Proof.

Suppose the orientation double cover $\pi : T_g \to U_g$ is equivalent to a polynomial cover. Then there exists an imbedding $h = (\pi, f) : T_g \to U_{g+1} \times \mathbb{C}$, and $f : T_g \to \mathbb{C}$ has the feature that $f(x) \neq f(-x)$ for all x in T_g . Conversely, if such an f exists, $h = (\pi, f)$ is an imbedding of T_g into $U_{g+1} \times \mathbb{C}$.