Polynomial Coverings

GAGA Seminar
Fall 2023

Definition

Let E and X be topological spaces and suppose $p: E \rightarrow X$ is a continuous surjection. An open subset U of X is evenly covered by p if $p^{-1}(U)$ is the disjoint union of a collection $\left\{V_{\alpha}\right\}_{\alpha \in A}$ of open subsets of E with the property that for each α in the index set A, the restriction of p to V_{α} is a homeomorphism from V_{α} to U.

Definition
If every point of X has a neighborhood that is evenly covered by p, then p is a covering map and that E is a covering space of X.

Example

For any nonempty topological space X and nonempty set A,

$$
\pi: X \times A \rightarrow X
$$

where π is projection, is a covering map.

Example

$$
p: \mathbb{R} \rightarrow S^{1} \quad p(x)=(\cos x, \sin x)
$$

Definition

Suppose that $p: E \rightarrow X$ and $p^{\prime}: E^{\prime} \rightarrow X$ are covering maps. We say that E and E^{\prime} are equivalent covering spaces if there exists a homeomorphism $h: E \rightarrow E^{\prime}$ that makes the following diagram commute.

We say $p: E \rightarrow X$ is trivial if it is equivalent to our first example

$$
\pi: X \times A \rightarrow X
$$

Definition

We say $p: E \rightarrow X$ is a finite cover if $p^{-1}(x)$ is a finite set for each x in X.

Example

${ }^{p}$

Definition

Let X be a connected and locally path connected topological space, and let $C(X)$ be the ring of continuous complex-valued functions on X. A Weierstrass polynomial is a monic element of $C(X)[\lambda]$:

$$
P(x, \lambda)=\lambda^{n}+\sum_{i=1}^{n} a_{i}(x) \lambda^{n-i}
$$

If $P(x, \lambda)$ has distinct zeros for each x in X, we call $P(x, \lambda)$ a simple Weierstrass polynomial.

Example

For any X and any natural number n,

$$
P(x, \lambda)=(\lambda-1)(\lambda-2) \cdots(\lambda-n)
$$

is a simple Weierstrass polynomial of degree n over X.

Example

$$
P(z, \lambda)=\lambda^{n}-z
$$

is a simple Weierstrass polynomial of degree n over S^{1}.

Example

$$
P((x, y, z), \lambda)=\lambda^{2}-2\left(x^{2}+y^{2}+i z^{2}\right) \lambda+4 i\left(x^{2}+y^{2}\right) z^{2}
$$

is a simple Weierstrass polynomial of degree 2 over S^{2}.

Definition

Let $P(x, \lambda)$ be a simple Weierstrass polynomial of degree $n>1$ over X. Let

$$
E=\{(x, \lambda) \in X \times \mathbb{C}: P(x, \lambda)=0\}
$$

and define $p: E \rightarrow X$ to be the restriction of the projection map $\pi: X \times \mathbb{C} \rightarrow X$. We call (E, p) the n-fold polynomial covering space associated to $P(x, \lambda)$.

$$
P(z, \lambda)=\lambda^{2}-z \in C\left(S^{1}\right)[\lambda]
$$

Question

Is every finite covering space (equivalent to) a polynomial covering space?

Answer: No.

Question

Can we characterize which finite covering spaces are (equivalent to) a polynomial covering space?

Answer: Yes.

Definition

Let $n>1$ be a natural number. The discriminant set of \mathbb{C}^{n} is

$$
\Delta=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{C}^{n}: P(\lambda)=\lambda^{n}+\sum_{i=1}^{n} a_{i} \lambda^{n-i}\right.
$$

does not have distinct zeros\}.

Definition

Let n be a natural number. The elementary symmetric polynomials in the variables $x_{1}, x_{2}, \ldots, x_{n}$ are defined to be

$$
\begin{aligned}
s_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =x_{1}+x_{2}+\cdots+x_{n} \\
s_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\sum_{1 \leq i<j \leq n} x_{i} x_{j} \\
\vdots & \\
s_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =x_{1} x_{2} \cdots x_{n}
\end{aligned}
$$

Theorem

Every symmetric polynomial in n variables can be uniquely written as a polynomial in the elementary symmetric polynomials.

Example

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=\left(s_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)^{2}-2 s_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Definition

Let δ be the unique polynomial in $n>1$ variables satisfying the equation

$$
\begin{aligned}
& \prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{2}= \\
& \quad \delta\left(-s_{1}\left(x_{1}, \ldots, x_{n}\right), s_{2}\left(x_{1}, \ldots, x_{n}\right), \ldots(-1)^{n} s_{n}\left(x_{1}, \ldots, x_{n}\right)\right) .
\end{aligned}
$$

The polynomial $\delta\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is called the discriminant polynomial in the variables $a_{1}, a_{2}, \ldots, a_{n}$. For a monic polynomial

$$
P(\lambda)=\lambda^{n}+\sum_{i=1}^{n} a_{i} \lambda^{i-1}
$$

in $\mathbb{C}[\lambda]$, the complex number $\delta\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is called the discriminant of $P(\lambda)$.

$$
\begin{gathered}
\delta\left(a_{1}, a_{2}\right)=a_{1}^{2}-4 a_{2} \\
\delta\left(a_{1}, a_{2}, a_{3}\right)=a_{1}^{2} a_{2}^{2}-4 a_{2}^{3}-4 a_{1}^{3} a_{3}+18 a_{1} a_{2} a_{3}-27 a_{3}^{2} \\
\delta\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=256 a_{4}^{3}-192 a_{1} a_{3} a_{4}^{2}-128 a_{2}^{2} a_{4}^{2}+144 a_{2} a_{3}^{2} a_{4}-27 a_{3}^{4} \\
+144 a_{1}^{2} a_{2} a_{4}^{2}-6 a_{1}^{2} a_{3}^{2} a_{4}-80 a_{1} a_{2}^{2} a_{3} a_{4}+18 a_{1} a_{2} a_{2} a_{4}^{3}+16 a_{2}^{4} a_{4} \\
-4 a_{2}^{3} a_{3}^{2}-27 a_{1}^{4} a_{4}^{2}+18 a_{1}^{3} a_{2} a_{3} a_{4}-4 a_{1}^{3} a_{3}^{3}-4 a_{1}^{2} a_{2}^{3} a_{4}+a_{1}^{2} a_{2}^{2} a_{3}^{2}
\end{gathered}
$$

Theorem

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the roots of

$$
P(\lambda)=\lambda^{n}+\sum_{i=1}^{n} a_{i} \lambda^{n-i},
$$

counted with multiplicity. Then for

$$
a_{i}=(-1)^{i} s_{i}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right),
$$

whence

$$
\delta\left(a_{1}, a_{2}, \ldots a_{n}\right)=\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2} .
$$

Corollary

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \Delta \text { if and only if } \delta\left(a_{1}, a_{2}, \ldots a_{n}\right)=0
$$

Corollary

For each natural number $n>1$, the discriminant set Δ is an algebraic variety of complex codimension one in \mathbb{C}^{n}.

Corollary

The complement B^{n} of the discriminant set in \mathbb{C}^{n} is a connected and locally path-connected open subset of \mathbb{C}^{n}.

Definition

The canonical Weierstrass polynomial over B^{n} is

$$
P^{n}\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right), \lambda\right)=\lambda^{n}+\sum_{i=1}^{n} a_{i} \lambda^{n-1}
$$

and the associated n-fold polynomial covering map $p^{n}: E^{n} \rightarrow B^{n}$ is called the canonical n-fold polynomial covering map.

Definition

Let $p: E \rightarrow X$ be an n-fold polynomial covering map associated with the simple Weierstrass polynomial

$$
P(x, \lambda)=\lambda^{n}+\sum_{i=1}^{n} a_{i}(x) \lambda^{n-i}
$$

over X. The coefficient functions $a_{i}(x)$ of $P(x, \lambda)$ determine a map

$$
a=\left(a_{1}, a_{2}, \ldots, a_{n}\right): X \rightarrow B^{n}
$$

called the coefficient map of $P(x, \lambda)$ and the polynomial covering map $p: E \rightarrow X$.

In this case, we will often write $P_{a}(x, \lambda)$ and $p_{a}: E_{a} \rightarrow X$.

Definition

$$
\begin{aligned}
& a^{*}\left(E^{n}\right)=\left\{\left(x,\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right), \lambda\right)\right) \in X \times E^{n}:\right. \\
& \\
& \left.p^{n}\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right), \lambda\right)=a(x)\right\} \\
& a^{*}\left(E^{n}\right) \xrightarrow{a^{*}} E^{n} \\
& \left(p^{n}\right)^{*} \downarrow \\
& X \xrightarrow{a} B^{n}
\end{aligned}
$$

Theorem

Define $h: E_{a} \rightarrow a^{*}\left(E^{n}\right)$ by the formula

$$
h(x, \lambda)=\left(x,\left(\left(a_{1}(x), a_{2}(x), \ldots, a_{n}(x)\right), \lambda\right)\right) .
$$

Then we have an equivalence of covering maps over X :

Theorem (Pullback Criterion)

A n-fold covering map $p: E \rightarrow X$ is equivalent to a polynomial covering map if and only if it is equivalent to the pullback of the canonical n-fold covering map $p^{n}: E^{n} \rightarrow B^{n}$.

Definition

We say that a finite covering map $p: E \rightarrow X$ can be imbedded in the trivial complex line bundle $X \times \mathbb{C}$ over X if there exists an imbedding $f: E \rightarrow X \times \mathbb{C}$ such that the diagram

commutes.

Without loss of generality, we may assume that E is a subset of $X \times \mathbb{C}$ and that p is the restriction of the projection π to E.

Theorem (Imbedding Criterion)

A finite covering map $p: E \rightarrow X$ is equivalent to a polynomial covering map if and only if it admits an imbedding into the trivial line bundle over X.

Proof.

(\Longrightarrow) By its very definition, a polynomial covering map imbeds into $X \times \mathbb{C}$.
(\Longleftarrow) Let $p: E \rightarrow X$ be an n-fold covering map that imbeds into $X \times \mathbb{C}$, and view E as a subset of $X \times \mathbb{C}$. Define

$$
P(x, \lambda)=\prod_{\left(x, \lambda_{x}\right) \in p^{-1}(x)}\left(\lambda-\lambda_{x}\right) .
$$

Then $P(x, \lambda)$ is a simple Weierstrass polynomial, and the local triviality of E implies that the coefficient functions $a_{i}: X \rightarrow \mathbb{C}$ are continuous. The covering map $p: E \rightarrow X$ is the polynomial covering map associated to $P(x, \lambda)$.

Example

$$
p: S^{1} \rightarrow \mathbb{R} P^{1}
$$

This is the nontrivial double cover of the circle, which is equivalent to the polynomial cover associated to $\lambda^{2}-z$.

To construct nonexamples, we need to talk about braids.

Standard generator σ_{i}
 $i(i+1)$

Definition

Let $n \geq 2$. The braid group on n strands is denoted by B_{n} and is the group with generators $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ and relations

$$
\begin{aligned}
\sigma_{i} \sigma_{i+1} \sigma_{i} & =\sigma_{i+1} \sigma_{i} \sigma_{i+1} \quad \text { for all } i \\
\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i} \quad \text { for all }|i-j|>1
\end{aligned}
$$

Theorem

B_{n} is torsion-free.

Idea of Proof.

The map that sends each generator σ_{i} to 1 defines a homomorphism from B_{n} to \mathbb{Z}, and \mathbb{Z} is torsion-free.

Theorem

$\pi_{1}\left(B^{n}\right) \cong B(n)$

Theorem

Suppose that $\pi_{1}(X)$ is a torsion group; i.e., every group element has finite order. Then every polynomial covering of X is trivial.

Corollary

For $n \geq 2$, the quotient $\operatorname{map} \pi: S^{n} \rightarrow \mathbb{R} P^{n}$ is not equivalent to a polynomial covering map.

On the other hand,

Theorem

Suppose that $\pi_{1}(X)$ is a free group. Then every finite covering map is equivalent to a polynomial covering map.

Corollary

Every finite cover of S^{1} is equivalent to a polynomial covering map.

One more example for the geometric topologists!

Lemma

Let T_{g} be a closed orientable surface of genus g, viewed as a subset of \mathbb{R}^{3} that is symmetric with respect to the origin. There exists a continuous map $f: T_{g} \rightarrow \mathbb{C}$ with the property that $f(x) \neq f(-x)$ for all x in T_{g} if and only if g is odd.

Theorem

Let U_{g} be a closed nonorientable surface of genus g. The orientation double cover $\pi: T_{g} \rightarrow U_{g+1}$ is equivalent to a polynomial cover if and only if g is odd.

Proof.

Suppose the orientation double cover $\pi: T_{g} \rightarrow U_{g}$ is equivalent to a polynomial cover. Then there exists an imbedding
$h=(\pi, f): T_{g} \rightarrow U_{g+1} \times \mathbb{C}$, and $f: T_{g} \rightarrow \mathbb{C}$ has the feature that $f(x) \neq f(-x)$ for all x in T_{g}. Conversely, if such an f exists, $h=(\pi, f)$ is an imbedding of T_{g} into $U_{g+1} \times \mathbb{C}$.

