CLASS GROUPS OF ALGEBRAIC VARIETIES

Scott Nollet

1. Complex Algebraic Varieties

The fundamental object of study in algebraic geometry is the common zeros of polynomial equations: the Zero Set of \(f_1, f_2, \ldots, f_r \in \mathbb{C}[x_1, x_2, \ldots, x_n] \) is given by

\[
Z(f_1, \ldots, f_r) = \{ a \in \mathbb{C}^n : f_i(a) = 0 \ \forall i \}
\]

We say that the zero set \(X = Z(f_i) \) is an affine algebraic variety if the ideal \((f_1, \ldots, f_r) \subset \mathbb{C}[x_1, \ldots, x_n] \) is a prime (or if the radical \(\sqrt{(f_1, \ldots, f_r)} \) is a prime).

Being defined by a prime ideal has consequences:

• The affine coordinate ring \(A_X = \mathbb{C}[x_1, \ldots, x_n]/(f_i) \) is an integral domain.

• The field of fractions of \(A_X \) is the function field of \(X \).

• Using \(K(X) \), we define \(\dim X = \text{tr.deg.}_\mathbb{C}K(X) \), the transcendence degree of the field extension \(\mathbb{C} \subset K(X) \), the size of a transcendence basis of \(K(X) \) over \(\mathbb{C} \).

• If \(n = \dim X \), then there is an open dense subset \(U \subset X \) which has the structure of an \(n \)-dimensional complex manifold. In particular, \(X \) is equidimensional and irreducible.

Example 1. Two quick examples:

(a) The ideal \((xy - 1) \subset \mathbb{C}[x, y] \) is prime and defines the affine variety \(X \subset \mathbb{C}^2 \), a smooth complex conic.

(b) The zero set \(Z(xy(x - 1), xy(y - 1)) \subset \mathbb{C}^2 \) consists of the two coordinate axes and the point \((1, 1) \), so the ideal \((xy(x - 1), xy(y - 1)) \) is not prime.

Loosely speaking, a complex algebraic variety is obtained by gluing together affine varieties along Zariski open sets with regular functions, much the way a manifold is obtained by gluing together open balls in Euclidean space. This informal definition was experimented with in the 1940s, but has been subsumed by Grothendieck’s scheme language: an (abstract) variety is an integral separated scheme of finite type over an algebraically closed field \(k \).

Example 2. If \(x, y, z \) are homogeneous coordinates for \(\mathbb{P}^2_\mathbb{C} \), it is clear that the open sets \(U_x, U_y, U_z \) cover \(\mathbb{P}^2_\mathbb{C} \), where \(U_f = \{(x, y, z) : f \neq 0 \} \). Each is isomorphic to the...
complex plane \mathbb{C}^2, for example $\mathbb{C}^2 \cong U_x$ via the map $(a, b) \mapsto (1, a, b)$, so $\mathbb{P}_\mathbb{C}^2$ is an algebraic variety. Obviously this construction works for any projective space.

Now consider $X \subset \mathbb{P}_\mathbb{C}^2$ defined by the vanishing of the homogeneous $xy - z^2$, i.e. $X = Z(xy - z^2)$. Then via the isomorphisms, $X \cap U_x$ is defined by the prime ideal $(y - z^2)$, $X \cap U_y$ is defined by $x - z^2$ and $X \cap U_z$ is defined by $xy - 1$, so X is a (projective) variety.

Remark 1. Algebraic varieties are classified up to birational equivalence by their function fields: two varieties have isomorphic function fields if and only if they contain isomorphic Zariski open subsets.

2. Divisors on Algebraic Varieties

Let X be a complex algebraic variety. A prime divisor V on X is a subvariety $V \subset X$ such that $\dim V = \dim X - 1$. The prime divisor $V \subset X$ is Cartier if V is locally defined by a single equation.

Example 3. Two examples:

(a) Taking $X = \mathbb{C}$, the prime divisors are simply points $a \in \mathbb{C}$. Such a divisor is Cartier because it is defined (globally) by the vanishing of $g(x) = x - a$.

(b) Let $X = Z(y^2 - (x^3 + x^2)) \subset \mathbb{C}^2$. The variety X is not smooth, it has a node at the origin. In this case the prime divisors are still points, but the node is not Cartier. You might think to define the origin by using the equation $x = 0$, but this gives $x = y^2 = 0$, which defines the origin with multiplicity two. We require that the equation cut out V on X exactly, without multiplicity.

Remark 2. When X is smooth, every prime divisor is Cartier.

Remark 3. It is not so easy to tell when a prime divisor is Cartier along the singular locus, especially in cases where one has an equation that works set-theoretically, but not ideal-theoretically (such as Example 3 (b) above). This usually requires commutative algebra rather than geometry as a tool.

Example 4 We would like our divisors to be closed under deformation, but this is not true without some adjustment:

(a) The family of curves $X_t \subset \mathbb{P}^2$ given by $xy - z^2t = 0$ deforms the smooth conic ($t = 1$) to the union of two lines $xy = 0$ ($t = 0$), which is not a prime divisor because the ideal (xy) is not prime. One can see that the limit is not irreducible because it consists of two lines.

(b) The family X_t given by $xyt - z^2 = 0$ deforms the smooth conic to the double line $z^2 = 0$, i.e. the line $z = 0$ counted with multiplicity two.

Thus we could like to include unions of prime divisors and count them with multiplicities, which leads to the following groups:

Definition. Let X be an algebraic variety. A Weil divisor on X is an element of the free abelian group $\text{Div} X$ generated by prime divisors. The divisor $D = \sum n_i V_i$ is
effective if \(n_i \geq 0 \).

The group \(\text{Div}X \) is not very interesting, it doesn’t capture any geometry of the variety \(X \). It becomes interesting after we mod out be a certain equivalent relation.

3. Linear equivalence and the class group

For a meromorphic function \(f \) on a complex curve, one often considers the divisor associated to \(f \) given by the zeros of \(f \) minus the poles of \(f \). We can make an analogous definition here. For a variety \(X \) and \(0 \neq f \in K(X) \), \(f = \frac{g}{h} \) locally, which gives two effective Cartier divisors \(Z(g) \) and \(Z(h) \) on \(X \) and we define

\[
(f)_0 = Z(g) - Z(h) \in \text{Div}X,
\]

the principal divisor associated to \(f \). It is clear that the principal divisors form a subgroup \(\text{Prin}X \subset \text{Div}X \).

Definition. Two divisors \(D, E \in \text{Div}X \) are linearly equivalent if \(D - E = (f)_0 \) for some \(0 \neq f \in K(X) \).

Example 5. Let \(X \subset \mathbb{P}^3 \) be defined by the equation \(xy - z^2 \). Geometrically \(X \) is the cone over the smooth conic curve \(xy - z^2 = 0 \) in the plane \(w = 0 \) with vertex \(p = (0,0,0,1) \). An easy way to produce linearly equivalent divisors on \(X \) is to intersect \(X \) with various planes \(H \subset \mathbb{P}^3 \).

(a) Let \(H_1 \) be the plane \(w = 0 \). Then \(D_1 = H_1 \cap X \) is the smooth plane conic over which \(X \) is the cone. It is defined by the equation \(w = 0 \) on \(X \).

(b) Let \(H_2 \) be the plane \(z = 0 \). Then \(D_2 = H_2 \cap X \) is the union of two lines \(x = z = 0 \) and \(y = z = 0 \) and is defined by the equation \(z = 0 \) on \(X \).

(c) Let \(H_3 \) be the plane \(x = 0 \). Then \(D_3 = H_3 \cap X \) is a Cartier divisor defined by \(x = 0 \) on \(X \), and consists of a doubling of the ruling \(x = z = 0 \) on \(X \) (technically it is given by \(x = z^2 = 0 \)).

It is clear that each of the divisors \(D_i \) are pairwise linearly equivalent, for example \(D_1 - D_2 = (w)_0 \).

Remark 4. In general, if \(X \subset \mathbb{P}^n \) is a projective variety, the hyperplane sections \(H \cap X \) yield linearly equivalent divisors on \(X \). When \(n = 2 \), the hyperplanes \(H \subset \mathbb{P}^2 \) are actually LINES, hence the term “linear equivalence”.

Definition. For an algebraic variety \(X \), the class group is \(\text{Cl}X = \frac{\text{Div}X}{\text{Prin}X} \).

Definition The Cartier class group of \(X \) is defined as follows. A Cartier divisor is a global section of the sheaf \(\mathcal{K}^*/\mathcal{O}^* \), where \(\mathcal{K} \) is the sheaf locally given by the function field on \(X \) and \(\mathcal{O} \) is the sheaf of regular functions on \(X \). The principal divisors are the image of the map \(H^0(\mathcal{K}^*) \to H^0(\mathcal{K}^*/\mathcal{O}^*) \) and \(\text{CaCl}X \) is the corresponding quotient group.
Remark 5. For a variety X, we can compare various groups:

(1) In general, the group $\text{CaCl}X$ is isomorphic to the Picard group $\text{Pic}X$ of isomorphism classes of line bundles on X (with tensor product as group operation).

(2) If X is a locally factorial variety (meaning that the local ring at each point is a unique factorization domain), then there is an isomorphism $\text{Cl}X \cong \text{CaCl}X$. In particular, this holds if X is smooth.

(3) The Picard group need NOT be generated by the Cartier prime divisors, so the definition of $\text{Pic}X$ I gave on March 25th was not correct.

Example 6. $\text{Cl } \mathbb{C}^n = 0$. Indeed, if $V_1, V_2 \subset \mathbb{C}^n$ are Cartier prime divisors, they are given by the vanishing of respective equations $f_1 = 0$ and $f_2 = 0$ on \mathbb{C}^n, hence $V_1 - V_2 = (\frac{f_1}{f_2})_0$.

Example 7. $\text{Cl } \mathbb{P}^n \cong \mathbb{Z}$, generated by a hyperplane $H \subset \mathbb{P}^n$. The point here is that each prime divisor $V \subset \mathbb{P}^n$ is defined by the vanishing of a single homogeneous polynomial f of some degree d and we can define $\deg V = \deg f$. Extending by linearity gives a surjective group homomorphism $\deg : \text{Cl } \mathbb{P}^n \to \mathbb{Z}$. If $\deg(D) = 0$, then we can write $D = D_1 - D_2$ as a difference of effective divisors of the same degree d. Since D_i is effective, it is given by the vanishing of a polynomial f_i of degree d (the prime divisors with multiplicities correspond to irreducible factors of f_i with appropriate powers), when $D = (\frac{f_1}{f_2})_0 \in \text{Prin}X$, so the kernel consists of principal divisors. Note that $\frac{f_1}{f_2}$ really is a well-defined rational function on \mathbb{P}^n because both f_i are homogeneous of the same degree.