NOVIKOV ADDITIVITY

GREG FRIEDMAN

1. NOVIKOV ADDITIVITY AND WALL NON-ADDITIVITY

Given two manifolds M_1 , M_2 glued together along a common boundary. Additivity holds when the signature is additive with respect to this decomposition. Nonadditivity occurs when a manifold with boundary M is partitioned into two manifolds M_1 and M_2 with corners, and there is a formula

$$\sigma(M) = \sigma(M_1) + \sigma(M_2) + \text{Maslov}.$$

where Maslov is a Maslov index. We now proceed.

1.1. Bilinear forms. On finite dimensional R-vector spaces, given a bilinear form

$$\phi: V \otimes V \to \mathbb{R}$$

we call it symmetric if $\phi(v, w) = \phi(w, v)$ for all $v, w \in V$. The matrix representation is

$$M_{ij} = \phi\left(e_i, e_j\right)$$

Let

 $\sigma(V,\phi) = \sigma(V) = \dim(\text{largest pos. def. subspace}) - \dim(\text{largest neg. def. subspace})$ = #(pos. eigenvalues) - #(neg. eigenvalues).

We say that ϕ is nondegenerate if $\phi(v, w) = 0$ for all w implies v = 0. We say ϕ is nonsingular (same) iff

$$V \cong \operatorname{Hom}(V, \mathbb{R})$$
$$v \mapsto \phi(v, \cdot).$$

Fun facts:

- $(V_1, \phi_1), (V_2, \phi_2)$ produces $\phi_1 \boxplus \phi_2$ on $V_1 \oplus V_2 : \begin{pmatrix} \phi_1 & 0 \\ 0 & \phi_2 \end{pmatrix}$. The signature of the sum is the sum of the signatures.
- On $V_1 \otimes V_2$, there is a natural form. The signature $\sigma(\phi_1 \otimes \phi_2) = \sigma(\phi_1) \sigma(\phi_2)$.
- Suppose ϕ is nondegenerate. Then $\sigma(\phi) = 0$ iff there exists a self-annihilating subspace $A \subset V$ such that dim $(A) = \frac{1}{2} \dim(V)$. Self-annihilating means $A = A^{\perp}$, i.e. $\phi(a, b) = 0$ for all $a, b \in A$.

Topological Connections

Let M be a closed, connected, oriented, 4n-manifold. Then there is a bilinear form on $H^{2n}(M) \otimes H^{2n}(M) \xrightarrow{\cup} \mathbb{R}$. The cup product is symmetric and nondegenerate and implements Poincaré duality. Equivalently,

$$H_{2n}\left(M\right)\otimes H_{2n}\left(M\right)\overset{\cong}{\longrightarrow}\mathbb{R}$$

is the intersection pairing. If M is smooth, you can represent chains by chains that intersect nicely.

GREG FRIEDMAN

Given M, define the signature of the manifold to be

$$\sigma(M) = \sigma(\pitchfork) = \sigma(\cup).$$

If dim $M \neq 0 \mod 4$ then $\sigma(M) = 0$.

Fun Facts:

- Reversing orientation: $\sigma(-M) = -\sigma(M)$.
- $\sigma(M \times N) = \sigma(M)\sigma(N)$
- If $M^{4n} = \partial N^{4n+1}$, then $\sigma(M) = 0$. This comes from the exact sequence

$$H_{2n}\left(M\right) \to H_{2n}\left(N\right) \to H_{2n}\left(N,M\right) \to H_{2n-1}\left(M\right).$$

Signature of manifolds with boundary

Let M^{4n} be a compact, connected oriented manifold with boundary. Then there is a map

$$H_{2n}(M) \to H_{2n}(M, \partial M) \cong \operatorname{Hom}(H_{2n}(M), \mathbb{R})$$

by Lefschetz duality. This is not necessarily an isomorphism, so \pitchfork is not necessarily nondegenerate anymore. To fix this, the claim is that \pitchfork is nondegenerate on

$$V/W = H_{2n}(M) / \operatorname{Im}(H_{2n}(\partial M) \to H_{2n}(M)) \cong \operatorname{Im}(H_{2n}(M) \to H_{2n}(M, \partial M)).$$

To see this, suppose that $v \in V$, $w \in W$, $v \pitchfork w = 0$ by pushing the boundary and interior away from each other. So

$$v + W \pitchfork v' + W = v \pitchfork v' + W$$

is a well-defined pairing. To see nondegeneracy, suppose that $v \in V / W$ and $v' \in V / W$. If $v \pitchfork v' = 0 \mod W$ for all v', then $v \pitchfork v' = i(v) \pitchfork v'$ with i the "push-in map". But $i(v) \in H_{2n}(M, \partial M) \cong H_2(M)^*$, so that i(v) = 0. But then $v \in \ker(H_{2n}(M) \to H_{2n}(M, \partial M))$, so $v \in \operatorname{Im}(H_{2n}(\partial M) \to H_{2n}(M))$, so $v \in W$.

Proposition 1.1. $\sigma(\partial M^{4n+1}) = 0.$

Proof. This follows from the fact that if Φ is a nondegenerate bilinear symmetric form and $A \subset V$ with $\Phi(A, A) = 0$ and dim $A = \frac{1}{2} \dim V$ iff $A = A^{\perp}$.

The key observation is that if x^{2n} and y^{2n} are two chains in general position on the boundary, and we wish to compute $x \pitchfork_{\partial M} y$. Suppose in addition that $y = \partial Y$. Then this is the same as $x \pitchfork_M Y$. Let $K = \ker (H_{2n} (\partial M) \to H_{2n} (M))$, which are the cycles in ∂M that bound in M. Claim: $K = K^{\perp}$. Suppose $x, y \in K$. Then $x \pitchfork_{\partial M} y = x \pitchfork_M Y$. Since $\pitchfork_M: H_{2n} (M) \otimes H_{2n+1} (M, \partial M) \to \mathbb{R}$ is well-defined, $x \pitchfork_M Y = 0$. So $K \subset K^{\perp}$. Suppose that $x \notin K$. We will show that $x \notin K^{\perp}$. Since $x \notin K, x$ is a nonzero element of $H_{2n} (M)$. By Poincaré duality, there exists $Y \in H_{2n+1} (M, \partial M)$ such that $x \pitchfork_M Y = x \pitchfork_{\partial M} y \neq 0$. So $y \in K$, and $x \pitchfork_{\partial M} y \neq 0$.

2. DISCUSSION OF NOVIKOV ADDITIVITY

Let $M = M_1 \cup_{\partial M_1 = \partial M_2} M_2$. The claim is $\sigma(M) = \sigma(M_1) + \sigma(M_2)$. Here $\sigma(M_j)$ is the signature of the of the \uparrow form on

$$H_{2n}(M_j) / \operatorname{Im} \left(H_{2n}(\partial M_j) \to H_{2n}(M_j) \right) \cong \operatorname{Im} \left(H_{2n}(M_j) \to H_{2n}(M_j, \partial M_j) \right).$$

The rough idea is as follows. There are several different kinds of chains on M, depending how they interest the boundary. Let A_i be the image $A_i = \text{Im}((H_{2n}(M_i)) \to H(M))$. Then $A_1 \cap A_2 = \text{Im}((H(\partial M)) \to H(M))$. Note that $A_1 \pitchfork A_2 = 0$. We have

$$A_1 \cap A_2 = (A_1 + A_2)^{\perp}$$

 $\mathbf{2}$

If you buy this, $H_{2n}(M) \swarrow (A_1 + A_2) \cong (A_1 \cap A_2)^*$. Then

$$(A_1 + A_2) \nearrow (A_1 \cap A_2) = A_1 \swarrow (A_1 \cap A_2) \oplus A_2 \swarrow (A_1 \cap A_2)$$
$$\cong \operatorname{Im} (H(M_1) \to H(M_1, \partial M_1)) \oplus \operatorname{Im} (H(M_2) \to H(M_2, \partial M_2))$$
$$= I_1 \oplus I_2$$

Then $A_1 \cap A_2 \subset A_1 + A_2 \subset H(M)$. Then

$$H(M) = A_1 \cap A_2 \oplus (A_1 + A_2) \nearrow (A_1 \cap A_2) \oplus H(M) \nearrow (A_1 + A_2) \\ = A_1 \cap A_2 \oplus I_1 + I_2 \oplus (A_1 \cap A_2)^* \oplus (A_1 \cap A_2).$$

The intersection form acts on this decomposition as

$$\begin{split} & \pitchfork \quad _{M} = \left(\begin{array}{cccc} \pitchfork_{M_{1}} & 0 & * & 0 \\ 0 & \pitchfork_{M_{2}} & * & 0 \\ * & * & * & * \\ 0 & 0 & * & 0 \end{array} \right) \\ & \leftrightarrow \quad \left(\begin{array}{cccc} \pitchfork_{M_{1}} & 0 & 0 & 0 \\ 0 & \pitchfork_{M_{2}} & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & 0 \end{array} \right) \end{split}$$

(similarity). But then

$$\sigma(M) = \sigma(M_1) + \sigma(M_2) + 0$$

(The last part is zero because of the existence of a self-annihilating subspace, $\sigma(\partial N) = 0$.)

Also, Novikov additivity holds for cylinders.

The harder case is where there is a manifold with boundary M, and the boundary is cut as well.

$$M = M_1 \cup M_2.$$

This is Wall non-additivity.

$$\sigma(M) = \sigma(M_1) + \sigma(M_2) + \sigma(V; A, B, C),$$

where the last term is a Maslov index. Here V is a symplectic vector space, and A is a Lagrangian subspace (or at least isotropic). This comes with the intersection of ∂M_j with ∂M .

3. MASLOV INDICES AND WALL NONADDITIVITY

Novikov additivity: If $M = M_1 \cup M_2$, $\sigma(M) = \sigma(M_1) + \sigma(M_2)$ if M has no boundary. Wall nonadditivity: If Y^{4n} has boundary, $X_0 = \partial Y_{\pm}$, $X_{\pm} = X \cap \partial Y \cap Y_{\pm}$, $Z = \partial X_{\pm}$

$$\sigma\left(Y\right) = \sigma\left(Y_{+}\right) + \sigma\left(Y_{-}\right) + \sigma\left(V; A, B, C\right).$$

The Maslov triple index correction is $\sigma(V; A, B, C)$. In general, V is a vector space with an antisymmetric pairing Φ , and A, B, C are self-annihilating subspaces of V. For Wall,

$$V = H_{2n-1}(Z)$$

$$A = \ker (V \to H_{2n-1}(X_{-}))$$

$$B = \ker (V \to H_{2n-1}(X_{+}))$$

$$C = \ker (V \to H_{2n-1}(X_{0}))$$

The Maslov index is defined as follows. Let

$$W = \frac{A \cap (B+C)}{A \cap B + A \cap C}.$$

This is symmetric (up to isomorphism) in A, B, C. An element in W is represented by a triple (a, b, c) such that a + b + c = 0. We construct an isomorphism

$$W \to \frac{B \cap (A+C)}{B \cap A + B \cap C}.$$

Let f(a) = b where a+b+c = 0. Suppose that on the other hand, a+b+c = 0, a+b'+c' = 0. Then $b-b' = c-c' \in B \cap C$, so the quotient kills the ambiguity. So the map is well-defined. The kernel of this map $A \cap (B+C) \to \frac{B \cap (A+C)}{B \cap A+B \cap C}$. Then a+c=0, so $a \in A \cap C$, so there is no kernel. Also, it is clearly onto. Also $A \cap B$ are the same in the two pieces, so the map is an isomorphism.

The pairing on W is defined as follows. Given a + b + c = 0, a' + b' + c' = 0, we have

$$0 = \Phi(0, a') = \Phi(a + b + c, a') = \Phi(b + c, a')$$

$$\Phi(b, a') = -\Phi(c, a')$$

$$= \Phi(c, b')$$

$$= \Phi(a, b') = \Phi(a, c') = \Phi(b, c').$$

We define Ψ' on $A \cap (B+C)$ by

$$\Psi'(a,a') = \Phi(a,b')$$

It turns out this is well-defined in b', because if a' + b'' + c'' = 0,

$$\Phi(a, b') - \Phi(a.b'') = \Phi(a, b' - b'') = -\Phi(c, a' - a') = 0$$

A similar argument shows that it is well-defined in the first variable. Now, Ψ' descends to a well-defined Ψ on W. We see that if $a' \in A \cap C$, then a' + c' = 0, so b' = 0, so $\Psi'(a') = 0$. The same argument works for $A \cap B$, using the appropriate symmetry. We now show Ψ is symmetric on W:

$$\begin{split} \Psi(a,a') - \Psi(a',a) &= \Phi(a,b') - \Phi(a',b) \\ &= \Phi(a,b') - \Phi(b,a') \\ &= \Phi(a+b,a'+b') - \Phi(a,a') - \Phi(b,b') \\ &= \Phi(-c,-c') = 0. \end{split}$$

Now, we define Ψ as a symmetric pairing on W, and we define

$$\sigma\left(V_{\Phi}; A, B, C\right) := \sigma\left(\Psi\right)$$

Back to topology: we can compute the signature of the pieces by looking at

$$L = \operatorname{Im} \left(H_{2n} \left(X \right) \to H_{2n} \left(Y, \partial Y \right) \right) / \operatorname{radical}.$$

Every $x \in L$ can be represented by a chain x_2 in X_0 that has boundary in Z. We get a map $L \to W$. We take

$$x_2 \to \partial x_2 \in H_{2n-1}\left(Z\right) = V \twoheadrightarrow W$$

which works, since $\partial x_2 \in B \cap (A + C)$ (check: in B by defn, it suffices then to show that $x_2 \mapsto 0 \in H(X_+ \cup X_-)$, and

$$H(X) \to H_{2n}(Y) \xrightarrow{\partial} H_{2n}(Y, \partial Y) \to H(X_+ \cup X_-)$$

.) In the end, $L \cong W$. We need to show that $(L, \pitchfork) \cong (W, \Psi)$, then $\sigma(L) = \sigma(V; A, B, C)$.

DEPARTMENT OF MATHEMATICS, TEXAS CHRISTIAN UNIVERSITY, FORT WORTH, TEXAS 76129, USA