
NOVIKOV ADDITIVITY

GREG FRIEDMAN

1. Novikov Additivity and Wall Non-additivity

Given two manifolds M1, M2 glued together along a common boundary. Additivity holds
when the signature is additive with respect to this decomposition. Nonadditivity occurs when
a manifold with boundary M is partitioned into two manifolds M1 and M2 with corners, and
there is a formula

σ (M) = σ (M1) + σ (M2) + Maslov,

where Maslov is a Maslov index. We now proceed.

1.1. Bilinear forms. On finite dimensional R-vector spaces, given a bilinear form

φ : V ⊗ V → R,
we call it symmetric if φ (v, w) = φ (w, v) for all v, w ∈ V . The matrix representation is

Mij = φ (ei, ej) .

Let

σ (V, φ) = σ (V ) = dim (largest pos. def. subspace)− dim (largest neg. def. subspace)

= # (pos. eigenvalues)−# (neg. eigenvalues) .

We say that φ is nondegenerate if φ (v, w) = 0 for all w implies v = 0. We say φ is nonsingular
(same) iff

V ∼= Hom (V,R)

v 7→ φ (v, ·) .
Fun facts:

• (V1, φ1), (V2, φ2) produces φ1 � φ2 on V1 ⊕ V2 :

(
φ1 0
0 φ2

)
. The signature of the

sum is the sum of the signatures.
• On V1 ⊗ V2, there is a natural form. The signature σ (φ1 ⊗ φ2) = σ (φ1)σ (φ2).
• Suppose φ is nondegenerate. Then σ (φ) = 0 iff there exists a self-annihilating sub-

space A ⊂ V such that dim (A) = 1
2

dim (V ). Self-annihilating means A = A⊥, i.e.
φ (a, b) = 0 for all a, b ∈ A.

Topological Connections
Let M be a closed, connected, oriented, 4n-manifold. Then there is a bilinear form on

H2n (M) ⊗ H2n (M)
∪−→ R. The cup product is symmetric and nondegenerate and imple-

ments Poincaré duality. Equivalently,

H2n (M)⊗H2n (M)
t−→ R

is the intersection pairing. If M is smooth, you can represent chains by chains that intersect
nicely.
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Given M , define the signature of the manifold to be

σ (M) = σ (t) = σ (∪) .

If dimM 6= 0mod4 then σ (M) = 0.
Fun Facts:

• Reversing orientation: σ (−M) = −σ (M).
• σ (M ×N) = σ (M)σ (N)
• If M4n = ∂N4n+1, then σ (M) = 0. This comes from the exact sequence

H2n (M)→ H2n (N)→ H2n (N,M)→ H2n−1 (M) .

Signature of manifolds with boundary
Let M4n be a compact, connected oriented manifold with boundary. Then there is a map

H2n (M)→ H2n (M,∂M) ∼= Hom (H2n (M) ,R)

by Lefschetz duality. This is not necessarily an isomorphism, so t is not necessarily nonde-
generate anymore. To fix this, the claim is that t is nondegenerate on

V�W = H2n (M)�Im (H2n (∂M)→ H2n (M)) ∼= Im (H2n (M)→ H2n (M,∂M)) .

To see this, suppose that v ∈ V , w ∈ W , v t w = 0 by pushing the boundary and interior
away from each other. So

v +W t v′ +W = v t v′ +W

is a well-defined pairing. To see nondegeneracy, suppose that v ∈ V�W and v′ ∈ V�W . If
v t v′ = 0modW for all v′, then v t v′ = i (v) t v′ with i the ”push-in map”. But i (v) ∈
H2n (M,∂M) ∼= H2 (M)∗, so that i (v) = 0. But then v ∈ ker (H2n (M)→ H2n (M,∂M)), so
v ∈ Im (H2n (∂M)→ H2n (M)), so v ∈ W.

Proposition 1.1. σ (∂M4n+1) = 0.

Proof. This follows from the fact that if Φ is a nondegenerate bilinear symmetric form and
A ⊂ V with Φ (A,A) = 0 and dimA = 1

2
dimV iff A = A⊥.

The key observation is that if x2n and y2n are two chains in general position on the
boundary, and we wish to compute x t∂M y. Suppose in addition that y = ∂Y . Then this
is the same as x tM Y . Let K = ker (H2n (∂M)→ H2n (M)), which are the cycles in ∂M
that bound in M . Claim: K = K⊥. Suppose x, y ∈ K. Then x t∂M y = x tM Y . Since
tM : H2n (M) ⊗ H2n+1 (M,∂M) → R is well-defined, x tM Y = 0. So K ⊂ K⊥. Suppose
that x /∈ K. We will show that x /∈ K⊥. Since x /∈ K, x is a nonzero element of H2n (M).
By Poincaré duality, there exists Y ∈ H2n+1 (M,∂M) such that x tM Y = x t∂M y 6= 0. So
y ∈ K, and x t∂M y 6= 0. �

2. Discussion of Novikov Additivity

Let M = M1 ∪∂M1=∂M2 M2. The claim is σ (M) = σ (M1) + σ (M2). Here σ (Mj) is the
signature of the of the t form on

H2n (Mj)�Im (H2n (∂Mj)→ H2n (Mj)) ∼= Im (H2n (Mj)→ H2n (Mj, ∂Mj)) .

The rough idea is as follows. There are several different kinds of chains on M , depending
how they interest the boundary. Let Ai be the image Ai = Im ((H2n (Mi))→ H (M)). Then
A1 ∩ A2 = Im ((H (∂M))→ H (M)). Note that A1 t A2 = 0. We have

A1 ∩ A2 = (A1 + A2)⊥ .
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If you buy this, H2n (M)� (A1 + A2) ∼= (A1 ∩ A2)∗. Then

(A1 + A2)� (A1 ∩ A2) = A1� (A1 ∩ A2)⊕ A2� (A1 ∩ A2)
∼= Im (H (M1)→ H (M1, ∂M1))⊕ Im (H (M2)→ H (M2, ∂M2))

= I1 ⊕ I2

Then A1 ∩ A2 ⊂ A1 + A2 ⊂ H (M). Then

H (M) = A1 ∩ A2 ⊕ (A1 + A2)� (A1 ∩ A2)⊕H (M)� (A1 + A2)

= A1 ∩ A2 ⊕ I1 + I2 ⊕ (A1 ∩ A2)∗ ⊕ (A1 ∩ A2) .

The intersection form acts on this decomposition as

t M =


tM1 0 ∗ 0

0 tM2 ∗ 0
∗ ∗ ∗ ∗
0 0 ∗ 0



↔


tM1 0 0 0

0 tM2 0 0
0 0 ∗ ∗
0 0 ∗ 0


(similarity). But then

σ (M) = σ (M1) + σ (M2) + 0

(The last part is zero because of the existence of a self-annihilating subspace, σ (∂N) = 0.)
Also, Novikov additivity holds for cylinders.
The harder case is where there is a manifold with boundary M , and the boundary is cut

as well.

M = M1 ∪M2.

This is Wall non-additivity.

σ (M) = σ (M1) + σ (M2) + σ (V ;A,B,C) ,

where the last term is a Maslov index. Here V is a symplectic vector space, and A is a
Lagrangian subspace (or at least isotropic). This comes with the intersection of ∂Mj with
∂M .

3. Maslov Indices and Wall nonadditivity

Novikov additivity: If M = M1 ∪M2, σ (M) = σ (M1) + σ (M2) if M has no boundary.
Wall nonadditivity: If Y 4n has boundary, X0 = ∂Y±, X± = X ∩ ∂Y ∩ Y±, Z = ∂X±

σ (Y ) = σ (Y+) + σ (Y−) + σ (V ;A,B,C) .

The Maslov triple index correction is σ (V ;A,B,C). In general, V is a vector space with an
antisymmetric pairing Φ, and A, B, C are self-annihilating subspaces of V . For Wall,

V = H2n−1 (Z)

A = ker (V → H2n−1 (X−))

B = ker (V → H2n−1 (X+))

C = ker (V → H2n−1 (X0))
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The Maslov index is defined as follows. Let

W =
A ∩ (B + C)

A ∩B + A ∩ C
.

This is symmetric (up to isomorphism) in A,B,C. An element in W is represented by a
triple (a, b, c) such that a+ b+ c = 0. We construct an isomorphism

W → B ∩ (A+ C)

B ∩ A+B ∩ C
.

Let f (a) = b where a+b+c = 0. Suppose that on the other hand, a+b+c = 0, a+b′+c′ = 0.
Then b− b′ = c− c′ ∈ B ∩C, so the quotient kills the ambiguity. So the map is well-defined.

The kernel of this map A ∩ (B + C)→ B∩(A+C)
B∩A+B∩C . Then a+ c = 0, so a ∈ A ∩ C, so there is

no kernel. Also, it is clearly onto. Also A ∩B are the same in the two pieces, so the map is
an isomorphism.

The pairing on W is defined as follows. Given a+ b+ c = 0, a′ + b′ + c′ = 0, we have

0 = Φ (0, a′) = Φ (a+ b+ c, a′) = Φ (b+ c, a′) ,

Φ (b, a′) = −Φ (c, a′)

= Φ (c, b′)

= Φ (a, b′) = Φ (a, c′) = Φ (b, c′) .

We define Ψ′ on A ∩ (B + C) by

Ψ′ (a, a′) = Φ (a, b′) .

It turns out this is well-defined in b′, because if a′ + b′′ + c′′ = 0,

Φ (a, b′)− Φ (a.b′′) = Φ (a, b′ − b′′)
= −Φ (c, a′ − a′) = 0.

A similar argument shows that it is well-defined in the first variable. Now, Ψ′ descends to a
well-defined Ψ on W . We see that if a′ ∈ A ∩ C, then a′ + c′ = 0, so b′ = 0, so Ψ′ (a′) = 0.
The same argument works for A ∩ B, using the appropriate symmetry. We now show Ψ is
symmetric on W :

Ψ (a, a′)−Ψ (a′, a) = Φ (a, b′)− Φ (a′, b)

= Φ (a, b′)− Φ (b, a′)

= Φ (a+ b, a′ + b′)− Φ (a, a′)− Φ (b, b′)

= Φ (−c,−c′) = 0.

Now, we define Ψ as a symmetric pairing on W , and we define

σ (VΦ;A,B,C) := σ (Ψ) .

Back to topology: we can compute the signature of the pieces by looking at

L = Im (H2n (X)→ H2n (Y, ∂Y ))�radical.

Every x ∈ L can be represented by a chain x2 in X0 that has boundary in Z. We get a map
L→ W . We take

x2 → ∂x2 ∈ H2n−1 (Z) = V � W
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which works, since ∂x2 ∈ B ∩ (A+ C) (check: in B by defn, it suffices then to show that
x2 7→ 0 ∈ H (X+ ∪X−), and

H (X)→ H2n (Y )
∂→ H2n (Y, ∂Y )→ H (X+ ∪X−)

.) In the end, L ∼= W . We need to show that (L,t) ∼= (W,Ψ), then σ (L) = σ (V ;A,B,C).
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