
THE DICTIONARY BETWEEN COMMUTATIVE AND
NONCOMMUTATIVE GEOMETRY AND TOPOLOGY

EFTON PARK

1. C∗ algebras

Let X be a compact Hausdorff space. Let C (X) be a C-algebra of continuous C-

valued functions on X. We have the involution f ∗ (x) = f (x) and the norm ‖f‖ =
sup {|f (x)| : x ∈ X}. Also, C (X) is a Banach ∗-algebra (normed complete ∗-algebra).

There is a contravariant functor C from the category of compact, Hausdorff spaces and
continuous functions to Banach ∗-algebras and ∗-homomorphisms. A C∗-algebra A is a
Banach ∗-algebra where ‖a∗a‖ = ‖a‖2 for all a ∈ A. The space C (X) is a commutative
C∗-algebra.

Theorem 1.1. (Gelfand-Naimark) Every commutative C∗-algebra with unit is ∗-isomorphic
to C (X) for some compact Hausdorff space X.

Theorem 1.2. Every closed ∗-ideal of C (X) uniquely has the form

C0 (X�A) := {f ∈ C (X) : f (a) = 0 for all a ∈ A}

for some unique closed subset A.

Corollary 1.3. The maximal ideals in C (X) can be identified with points of X.

Corollary 1.4. The space X can be recovered from C (X).

Theorem 1.5. The functor C determines a category equivalence between compact Hausdorff
spaces and commutative C∗-algebras.

In theory, we could do topology by working with C∗-algebras, but in practice this usually
does not work well. One good example is as follows. {C-vector bundles over X} corresponds
to {finitely generated projective modules over C (X) .} (Serre-Swan Theorem).

”Non-commutative topology” can be viewed as the study of general unital C∗-algebras
— ie noncommutative ones. Why can’t you learn more topology from the noncommutative
side? There are many maps between topological spaces. However, the C∗ condition is very
strong, and there is a lot of rigidity: not many ∗-homomorphisms in the noncommutative
case.

A more modern idea (Connes): study ”bad” topological spaces(i.e. nonHausdorff), by
replacing them with ”good”, but noncommutative, C∗-algebras.

Examples:

(1) Orbit space of a (not necessarily compact) Lie group acting on a compact manifold.
(2) Leaf space of a foliation.
(3) Space of irreducible representations of a discrete or Lie group on a Hilbert space.
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The C∗-algebra for a group G acting on a compact manifold M via α : G→ Aut (M) is

Cc (G,C (M)) = {continous fcns φ : G→ C (M) with compact support}
with convolution product

(φ ∗ ψ) (g) =

∫
φ (h)αh

(
ψ
(
h−1g

))
dh

with pointwise addition. We complete Cc (G,C (M)) to a C∗-algebra.
If Γ is a discrete group, CΓ acts on `2Γ, i.e. CΓ ⊆ ` (`2Γ). Then

C∗r (Γ) = closure of CΓ in `
(
`2Γ
)

is known as the reduced group C∗-algebra. The simplest case is C∗r (Z) ∼= C (T) via the
Fourier series.

2. Cyclic Homology

Let A be a C-algebra with unit. Let

Cλ
n (A) =

⊗
n+1

A� ∼,

where
an ⊗ a0 ⊗ a1 ⊗ ...⊗ an−1 ∼ (−1)n a0 ⊗ a1 ⊗ ...⊗ an.

We have the boundary map

b : Cλ
n (A)→ Cλ

n−1 (A)

b (a0 ⊗ a1 ⊗ ...⊗ an) = a0a1 ⊗ ...⊗ an

+
n−1∑
i=1

(−1)i a0 ⊗ a1 ⊗ ...⊗ ai−1 ⊗ aiai+1 ⊗ ...⊗ an

+ (−1)n ana0 ⊗ a1 ⊗ ...⊗ an.
Then b2 = 0, and the cyclic homology of A is defined to be Hλ

∗ (A) = homology of
(
Cλ
∗ (A) , b

)
.

We also write elements a0 ⊗ a1 ⊗ ...⊗ an as noncommutative differential forms

a0da1da2...dan.

When A = C∞ (M), this produces isomorphisms

Hλ
2n (C∞ (M)) ∼= Heven

dR (M ;C)

Hλ
2n+1 (C∞ (M)) ∼= Hodd

dR (M ;C)

for n sufficiently large. So cyclic homology is a way of making sense of differential forms
when you don’t have a smooth manifold. More precisely,

Hλ
k (C∞ (M)) = Ωk (M)�d

(
Ωk−1 (M)

)
⊕Hk−2

dR (M)⊕Hk−4
dR (M)⊕ ...

Other ways of getting cyclic homology are as follows. Question: where do elements of
Hλ
∗ (A) come from. Answer: K-theory. Let e (determines class in K0 (A)) be an idempotent

in M (m,A), then
Tr (e (de)n) ∈ Hλ

n (A)

for n even. Let u (determines class in K1 (A) ) be an element of GL (m,A). Then

Tr
((
u−1du

)n) ∈ Hλ
n (A)
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for n odd. Think of e as a projection from a trivial bundle to a vector bundle.(
a11 a12

a21 a22

)(
da11 da12

da21 da22

)n
.

Next, consider cyclic cohomology. Let A be a topological algebra with unit. Let Cn
λ (A)

be the A-module of continuous multilinear maps An+1 → C. Let

b : Cn
λ (A)→ Cn+1

λ (A)

(bφ) (a0 ⊗ a1 ⊗ ...⊗ an+1) = φ (a0a1 ⊗ a2 ⊗ ...⊗ an+1)

+
n−1∑
i+1

(−1)i φ (a0 ⊗ a1 ⊗ ...⊗ ai−1 ⊗ aiai+1 ⊗ ...⊗ an)

+ (−1)n φ (ana0 ⊗ a1 ⊗ ...⊗ an) .

Then b2 = 0, and cyclic cohomology is defined to be

H∗λ (A) = cohomology of (Cn
λ (A) , b) .

There is a pairing
H∗λ (A)×Hλ

∗ (A)→ C.
Question: where do interesting elements of cyclic cohomology come from? Answer: From

Fredholm modules. A Fredholm module over A is a triple (H, π, F ), where H is a Z2-
graded Hilbert space with grading operator ε (ε2 = 1,H+ = 1-eigenspace, H− = (−1)-
eigenspace; π : A→ B (H) is a representation of A on H that respects the grading:

π (a) =

(
π+ (a) 0

0 π− (a)

)
;

F ∈ B (H), F 2 − 1 ∈ K (H), Fπ (a)− π (a)F ∈ K (H) for all a ∈ A, εF = −Fε,

F =

(
0 ∗
∗ 0

)
.

If Fπ (a)−π (a)F ∈ Lp (H) (ie pth power is trace class, p ≥ 1) for all a ∈ A, we say (H, π, F )
is p-summable. If Fπ (a) − π (a)F ∈ Lp (H) for all a ∈ A ⊆ A for a dense subset, we say
(H, π, F ) is essentially p-summable.

Prototypical example: A = C (M), M smooth compact manifold, H = L2 (M,E), with E
a Z2-graded Hermitian vector bundle over M , and A acts on H by pointwise multiplication.

Then D is an elliptic (pseudo)differential operator on E of the form

(
0 ∗
∗ 0

)
. On T2,

D =

(
0 ∂

∂x
+ i ∂

∂y

− ∂
∂x

+ i ∂
∂y

0

)
is an example. Let F = positive spectral projection of D if D is essentially self-adjoint, or

F = D
(
1 +D2

)−1/2
,

so that F 2 − I ∈ K. For example,

F

(∑
nseZ

ane
inθ

)
=
∑
n≥0

ane
inθ.

Note that (H, π, F ) is essentially p-summable for p > dimM .
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3. Answer to Igor’s Question

Let A = C∞ (M), M a smooth compact manifold. Consider the double complex:

↓b ↓b ↓b
B←− A⊗ A⊗ A B←− A⊗ A B←− A

↓b ↓b

A⊗ A B←− A
↓b
A

Let

B (a0 ⊗ a1 ⊗ ...⊗ an) =
n−1∑
i=0

[
(−1)ni (1⊗ ai ⊗ ...⊗ an ⊗ a0 ⊗ ...⊗ ai−1)

− (−1)n(i−1) (ai−1 ⊗ 1⊗ ai ⊗ ...⊗ ai−2)

]
Then B2 = 0, Bb+ bB = 0, where

b (a0 ⊗ a1 ⊗ ...⊗ an) = a0a1 ⊗ ...⊗ an

+
n−1∑
i=1

(−1)i a0 ⊗ a1 ⊗ ...⊗ ai−1 ⊗ aiai+1 ⊗ ...⊗ an

+ (−1)n ana0 ⊗ a1 ⊗ ...⊗ an.

This complex is called B (A), and Tot(B (A)) is the complex obtained by taking direct sums
on the diagonal. You can do the same thing with the Cech-de Rham complex.

Theorem 3.1. H∗ (Tot (B (A))) ∼= Hλ
∗ (A).

The truncated de Rham complex is

↓0 ↓0 ↓0

d←− Ω2 (M)
d←− Ω1 (M)

d←− Ω0 (M)
↓0 ↓0

Ω1 (M)
d←− Ω0 (M)

↓0

Ω0 (M)

One can check that d2 = 0, 02 = 0, 0d+ d0 = 0. Call this complex D (M).

Theorem 3.2. H∗ (Tot (D (M))) ∼= H∗dR (M).

Define πn :
⊗
n+1

A→ Ωn (M) by

πn (a0 ⊗ ...⊗ an) = a0da1...dan .

Then
{

1
n!
πn
}

determines a map from B (A) to D (M) that induces an isomorphism.

4. More Fun with Fredholm Modules

Recall: a Fredholm module over a unital C-algebra A is a triple (H, π, F ), where

• H = H+ ⊕H− is a Z2-graded Hilbert space with grading operator ε (ε2 = 1).
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• π : A→ B (H) is a representation of A on H and respects the grading, i.e.

π (a) =

(
π+ (a) 0

0 π− (a)

)
• F ∈ B (H), F 2 − I is compact, F reverses the grading, and [F, π (a)] is compact for

each a ∈ A.

F =

(
0 P
Q 0

)
.

Note that compact means a (operator norm) limit of finite rank operators.

(Think: F = D (1 +D2)
−1/2

, D Dirac operator, A = C∞ (M)). If [F, π (a)] is trace class,
we say (H, π, F ) is 1-summable. If this condition only holds for a dense subalgebra A of
A, we say that this module is essentially 1-summable.

The character of an essentially 1-summable Fredholm module over A is

ρ (a) =
1

2
Trace (εF [F, π (a)]) .

This ρ determines an element of H1
λ (A). Important commutative diagram:

Fred (A) × K∗ (A)
index−→ Z

↓ch ↓ch ↓
H∗λ (A) × Hλ

∗ (A) → C

Picking a Fredholm module is akin to choosing a Riemannian structure.
Application: Let Γ be a discrete group, and let CΓ be the complex group algebra. Let

CΓ ⊆ B (`2 (Γ)) be the left regular representation. Then

CΓ =

{∑
γ∈Γ

aγγ : aγ ∈ C

}
.

Then

aγγ : `2 (Γ)→ `2 (Γ)

is defined by

aγγ (δα) = aγδγα

The norm closure of CΓ in B (`2 (Γ)) is called the reduced C∗-algebra C∗r (Γ) of Γ.
Noncommutative connectivity conjecture:

Conjecture 4.1. (Bass Idempotent Conjecture): If Γ is torsion-free, then CΓ has no non-
trivial idempotents (i.e. e 6= 0, 1).

Conjecture 4.2. (Kadison Conjecture): If Γ is torsion-free, then C∗rΓ has no nontrivial
idempotents.

(Note Baum-Connes Conjecture implies both of these and the Borel Conjecture and ...)



6 EFTON PARK

5. A proof of Kadison’s conjecture for F2

Let F2 be the free group on two generators.
Let CF2 ⊆ C∗r (F2) ⊂ B (`2 (F2)) - reduced group C∗-algebra.
Here, ∑

γ∈F2

aγγ : `2 (F2)→ `2 (F2)(∑
γ∈F2

aγγ

)
(δα) =

∑
γ∈F2

aγγα,

where

〈δα, δβ〉 =

{
0 α 6= β
1 α = β

Theorem 5.1. (Kadison Conjecture): C∗r (F2) contains no nontrivial idempotents.

Definition 5.2. Let τ : A→ C be a trace on a C∗-algebra A (τ (ab) = τ (ba)). We say τ is

• positive if τ (a∗a) ≥ 0 for all a ∈ A.
• faithful if τ (a∗a) = 0 iff a = 0.

Example 5.3. The function τ : CF2 → C defined by

τ

(∑
γ∈F2

aγγ

)
= a1

extends to a positive faithful trace on C∗r (F2).

Theorem 5.4. Let A be a C∗-algebra that admits a positive faithful trace τ such that τ (1) =
1. Let (H, π, F ) be an essentially 1-summable Fredholm module on A. Let

A =
{
a ∈ A : Fπ (a)− π (a)F ∈ L1 (H)

}
.

(Then A is a dense subalgebra of A.) Suppose the character ρ on (H, π, F ) agrees with τ on
A. Then there is no nontrivial idempotent on A.

Note that a character ρ : A → C is ρ (a) = 1
2
Trace (εF (Fπ (a)− π (a)F )) (Hilbert space trace) .

. (Sketch) The inclusion A ↪→ A induces an isomorphism:

K0 (A)→ K0 (A) .

(reason: A is closed under the holomorphic functional calculus, i.e. if a ∈ A and f is
holomorphic in an open domain containing the spectrum of A, then

f (a) :=

∫
C

f (z)

a− z
dz ∈ A .

Therefore, we may assume an idempotent e in A actually lives in A. By K-theory nonsense,
we may assume also that e∗ = e.

From our commutative diagram,

Fred (A) × K∗ (A)
index−→ Z

↓ch ↓ch ↓
H∗λ (A) × Hλ

∗ (A) → C
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By hypothesis, we see that τ (e) = ρ (e) ∈ Z. We also know that

τ (e) = τ (e∗e) ≥ 0

because τ is positive. But 1− e is also a self-adjoint idempotent,

τ (1− e) ≥ 0,

1− τ (e) ≥ 0

so τ (e) ≤ 1. If τ (e) = 0, then τ (e∗e) = 0 so τ (e) = 0 by faithfulness.
If τ (e) = 1, then τ ((1− e∗) (1− e)) = 0, and 1− e = 0, e = 1. �
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