THE DICTIONARY BETWEEN COMMUTATIVE AND
NONCOMMUTATIVE GEOMETRY AND TOPOLOGY

EFTON PARK

1. C* ALGEBRAS

Let X be a compact Hausdorff space. Let C'(X) be a C-algebra of continuous C-
valued functions on X. We have the involution f*(z) = f(z) and the norm ||f|] =
sup{|f (z)| : € X}. Also, C'(X) is a Banach x-algebra (normed complete x-algebra).

There is a contravariant functor C' from the category of compact, Hausdorff spaces and
continuous functions to Banach x-algebras and sx-homomorphisms. A C*-algebra A is a
Banach x-algebra where ||a*a| = ||a|”® for all @ € A. The space C (X) is a commutative
C*-algebra.

Theorem 1.1. (Gelfand-Naimark) Every commutative C*-algebra with unit is x-isomorphic
to C (X) for some compact Hausdorff space X .

Theorem 1.2. Every closed x-ideal of C' (X) uniquely has the form
Co(X\NA)={feC(X):f(a)=0 foralla € A}

for some unique closed subset A.

Corollary 1.3. The mazimal ideals in C (X) can be identified with points of X .

Corollary 1.4. The space X can be recovered from C (X).

Theorem 1.5. The functor C determines a category equivalence between compact Hausdorff
spaces and commutative C*-algebras.

In theory, we could do topology by working with C*-algebras, but in practice this usually
does not work well. One good example is as follows. {C-vector bundles over X} corresponds
to {finitely generated projective modules over C'(X).} (Serre-Swan Theorem).

”Non-commutative topology” can be viewed as the study of general unital C*-algebras
— ie noncommutative ones. Why can’t you learn more topology from the noncommutative
side? There are many maps between topological spaces. However, the C* condition is very
strong, and there is a lot of rigidity: not many x-homomorphisms in the noncommutative
case.

A more modern idea (Connes): study "bad” topological spaces(i.e. nonHausdorff), by
replacing them with ”good”, but noncommutative, C*-algebras.

Examples:

(1) Orbit space of a (not necessarily compact) Lie group acting on a compact manifold.
(2) Leaf space of a foliation.

(3) Space of irreducible representations of a discrete or Lie group on a Hilbert space.
1



2 EFTON PARK

The C*-algebra for a group G acting on a compact manifold M via a: G — Aut (M) is
C.(G,C (M)) = {continous fcns ¢ : G — C' (M) with compact support}

with convolution product

@x0)(9) = [ o (v (17'9))
with pointwise addition. We complete C, (G, C (M)) to a C*-algebra.
If T is a discrete group, CI' acts on ¢2T, i.e. CI" C £ (£°T"). Then
C; (T') = closure of CI' in ¢ (£°T)
is known as the reduced group C*-algebra. The simplest case is C (Z) = C (T) via the

Fourier series.

2. CycLic HoMoOLOGY

Let A be a C-algebra with unit. Let
Cr(A) = QA ~.

n+1
where
Uy QagRa; Q... Qap_1~(—1)"ag R a1 ® ... R ay,.
We have the boundary map
b = COMA) = (A
blag®a; ®...Qa,) = aa ® ... R® a,

n—1
+ Z (—1)1 ao ® aq ® ® a;—1 ® ai(li+1 ® ® Qp,
i=1

+(=1)" apa0 ® a1 @ ... ® .
Then b* = 0, and the cyclic homology of A is defined to be H; (4) = homology of (C2 (A),b).

We also write elements ay ® a1 ® ... ® a,, as noncommutative differential forms
apdaidas...day,.
When A = C° (M), this produces isomorphisms
Hy, (C* (M) = Hgg" (M;C)
Hy,  (C* (M) = Hgg' (M;C)
for n sufficiently large. So cyclic homology is a way of making sense of differential forms
when you don’t have a smooth manifold. More precisely,
Hp (C* (M) = QF (M) /d (91 (M) @ Hyp® (M) & Hyp" (M) & ...

Other ways of getting cyclic homology are as follows. Question: where do elements of
H} (A) come from. Answer: K-theory. Let e (determines class in Ky (A)) be an idempotent
in M (m, A), then

Tr(e(de)") € H) (A)
for n even. Let u (determines class in K (A) ) be an element of GL (m, A). Then
Tr((u'du)") € Hy (A)
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for n odd. Think of e as a projection from a trivial bundle to a vector bundle.

n
a1x a2 dayy  daqs
Q21 A22 dag;  dasg

Next, consider cyclic cohomology. Let A be a topological algebra with unit. Let C} (A)
be the A-module of continuous multilinear maps A" — C. Let
b o CY(A) = CYH(A)
(bd) (ap ® a1 ® ... @ apr1) = ¢(apa1 @ as @ ... ® Apt1)

n—1
+ Z (—1)Z ¢ (a() ® aq ® ® ;1 ® CL,‘CLZ‘_H ® ® CLn)
i+1
+(=1)" ¢ (anao @ a1 ® ... @ a,) .
Then b* = 0, and cyclic cohomology is defined to be
H; (A) = cohomology of (CY (A),D).
There is a pairing
H; (A) x H)} (A) — C.

Question: where do interesting elements of cyclic cohomology come from? Answer: From
Fredholm modules. A Fredholm module over A is a triple (H,w, F'), where H is a Zo-
graded Hilbert space with grading operator € (¢ = 1,H, = l-eigenspace, H_ = (—1)-
eigenspace; m: A — B(H) is a representation of A on H that respects the grading:

_ [ 7+ (a) 0 .
=" )
FeB(H), F?—1eK(H), Fr(a)—7m(a) F € K(H) forall a € A, eF = —FF,

F:(g;).

If Fr(a)—m(a) F € LP (H) (ie p'" power is trace class, p > 1) for all a € A, we say (H,, F)
is p-summable. If F'r(a) — 7w (a) F € LP (H) for all a € A C A for a dense subset, we say
(H,m, F) is essentially p-summable.

Prototypical example: A = C' (M), M smooth compact manifold, H = L? (M, E), with E
a Zso-graded Hermitian vector bundle over M, and A acts on H by pointwise multiplication.

* ) On T2,

Then D is an elliptic (pseudo)differential operator on E of the form ( 2 0

o 4 ;0
D = ( o) ! - 9 o * Kz )
9z + Za—y 0
is an example. Let F' = positive spectral projection of D if D is essentially self-adjoint, or
F=D(1+D* "
so that F? — I € K. For example,

F (Z anein0> _ Zanemﬁ‘

nseZ n>0

Note that (H,m, F') is essentially p-summable for p > dim M.



4 EFTON PARK

3. ANSWER TO IGOR’S QUESTION

Let A= C* (M), M a smooth compact manifold. Consider the double complex:

ib ib \Lb
B B B
— ARARA +— ARQRA «+— A
b b
AvA £ A4
~Lb
A

Let

n—1 i
(D" (1®ae;®.Qa,Qa)® ... da;_1)
Bay®a ®..®a,) = (i

(a0 ® @ ) ;{ (1" (1 ®1®G® ... ® a)
Then B? =0, Bb+ bB = 0, where

blag®a; ®...Qa,) = aa ® ... RQ a,
n—1
+Z (—1)1 ao X aq ®..Q a;—1 X ;41 X...R Qp,
1=1

+(—1D)"apa0 ® a1 @ ... Q a,.

This complex is called B (A), and Tot(B (A)) is the complex obtained by taking direct sums
on the diagonal. You can do the same thing with the Cech-de Rham complex.

Theorem 3.1. H, (Tot (B(A))) = H} (A).

The truncated de Rham complex is

1° 10 }°
o) <t () <& QO (M)
1° 1°
QL (M) < QO (M)
\LO
Q% (M)

One can check that d*> = 0, 0> =0, 0d + d0 = 0. Call this complex D (M).
Theorem 3.2. H* (Tot (D (M))) = H;, (M).
Define 7, : @ A — Q" (M) by

n+1
o (Ao ® ... ® a,,) = apday...da,, .

Then {%m,} determines a map from B (A) to D (M) that induces an isomorphism.

4. MoORE FuN wiTH FREDHOLM MODULES

Recall: a Fredholm module over a unital C-algebra A is a triple (H,m, F), where
o H =H"®H isa Zy-graded Hilbert space with grading operator & (% = 1).
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e 7: A— B(H) is a representation of A on H and respects the grading, i.e.

w0 (7" )

o F'e B(H), F? — I is compact, F reverses the grading, and [F, 7 (a)] is compact for

each a € A.
0 P
(07

Note that compact means a (operator norm) limit of finite rank operators.

(Think: F =D (1+ DZ)_I/Q, D Dirac operator, A = C* (M)). If [F,7 (a)] is trace class,
we say (H,m, F) is 1-summable. If this condition only holds for a dense subalgebra A of
A, we say that this module is essentially 1-summable.

The character of an essentially 1-summable Fredholm module over A is

1
pla) = §Tmce (eF [F,m(a)]).
This p determines an element of H; (A). Important commutative diagram:

Fred(A) x K,(A) ™% 7
\l/Ch iCh ~L
Hi (A) x HMA) — C

Picking a Fredholm module is akin to choosing a Riemannian structure.
Application: Let I'" be a discrete group, and let CI' be the complex group algebra. Let
CT C B(¢*(T")) be the left regular representation. Then

CF—{Zaﬂﬁ:aWEC}.

~er
Then
a,y: 2(T) — 2(1)
is defined by
a7 (0a) = Gy0qq

The norm closure of CI" in B (¢% (")) is called the reduced C*-algebra C* (T') of T.
Noncommutative connectivity conjecture:

Conjecture 4.1. (Bass Idempotent Conjecture): If T' is torsion-free, then CI' has no non-
trivial idempotents (i.e. e # 0,1).

Conjecture 4.2. (Kadison Conjecture): If T is torsion-free, then C*T' has no nontrivial
tdempotents.

(Note Baum-Connes Conjecture implies both of these and the Borel Conjecture and ...)
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5. A PROOF OF KADISON’S CONJECTURE FOR F)

Let F5 be the free group on two generators.
Let CF, C C* (Fy) C B(¢*(F})) - reduced group C*-algebra.

Here,
day o C(F) = ()
YEF?
(ZQW’Y) (0a) = ZGV'YO%
YEF> YEF>
where

<5a755>:{ (1) gig

Theorem 5.1. (Kadison Conjecture): C) (Fy) contains no nontrivial idempotents.

Definition 5.2. Let 7: A — C be a trace on a C*-algebra A (1 (ab) = 7 (ba)). We say T is

e positive if T (a*a) > 0 for all a € A.
e faithful if T (a*a) =0 iff a = 0.

Example 5.3. The function 7 : CFy, — C defined by

T (Z apy) =a
YEF,

extends to a positive faithful trace on CF (Fy).

Theorem 5.4. Let A be a C*-algebra that admits a positive faithful trace T such that T (1) =
1. Let (H,m, F) be an essentially 1-summable Fredholm module on A. Let

A={a€A:Fr(a)—7(a)FeL (H)}.
(Then A is a dense subalgebra of A.) Suppose the character p on (H,w, F') agrees with 7 on

A. Then there is no nontrivial idempotent on A.

Note that a character p: A — C is p(a) = 3Trace (¢F (Fr (a) — 7w (a) F)) (Hilbert space trace) .

. (Sketch) The inclusion A < A induces an isomorphism:
(reason: A is closed under the holomorphic functional calculus, i.e. if a € A and f is

holomorphic in an open domain containing the spectrum of A, then

flay= [ L&

ca—=z
Therefore, we may assume an idempotent e in A actually lives in A. By K-theory nonsense,
we may assume also that e* = e.
From our commutative diagram,

Fred(A) x K,(A) 2% 7
\LCh \LCh \L
H;(A) x H}A — C

dze A .
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By hypothesis, we see that 7 (e) = p(e) € Z. We also know that
T(e)=71(e"e) >0
because T is positive. But 1 — e is also a self-adjoint idempotent,
7(l—e) > 0,
l—7(e) > 0

soT(e) < 1. If 7(e) =0, then 7 (e*e) = 0 so 7 (e) = 0 by faithfulness.
= 1—e

If 7(e) =1, then 7((1 —¢€*) (1 —¢)) =0, and =0,e=1

O
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