
SMOOTH PROJECTIVE SURFACES

SCOTT NOLLET

Abstract. This talk will discuss some basics about smooth projective surfaces, leading
to an open question.

1. Surfaces

Definition 1.1. Let k be an algebraically closed field. A surface is a two dimensional
nonsingular closed subvariety S ⊂ Pn

k .

Example 1.2. A few examples.

(a) The simplest example is S = P2.
(b) The nonsingular quadric surfaces Q ⊂ P3 with equation xw − yz = 0 has Picard

group Z⊕ Z generated by two opposite rulings.
(c) The zero set of a general homogeneous polynomial f ∈ k[x, y, z, w] of degree d

gives rise to a smooth surface of degree d in P3.
(d) If C and D are any two nonsingular complete curves, then each is projective (see

previous lecture’s notes), and composing with the Segre embedding we obtain a
closed embedding S = C ×D ↪→ Pn.

1.1. Intersection theory. Given a surface S, let DivS be the group of Weil divisors.
There is a unique pairing

DivS ×DivS → Z
denoted (C,D) 7→ C ·D such that

(a) The pairing is bilinear.
(b) The pairing is symmetric.
(c) If C,D ⊂ S are smooth curves meeting transversely, then C ·D = #(C ∩D).
(d) If C1 ∼ C2 (they are linearly equivalent), then C1 ·D = C2 ·D.

Remark 1.3. When k = C one can describe the intersection pairing with topology.
The divisor C gives rise to the line bundle L = OS(C) which has a first Chern class
c1(L) ∈ H2(S,Z) and similarly D gives rise to a class D ∈ H2(S,Z) by triangulating the
components of D as real surfaces. Then C ·D = c1(L) ∩D ∈ H0(S,Z) ∼= Z is simply the
cap product.

In view of property (d), the intersection pairing induces a pairing on Picard groups

PicS × PicS → Z
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Example 1.4. When S = P2, PicS ∼= Z is generated by the class L of a line. Since two
lines meet in a single (reduced) point, L ·L = 1. It follows that if D,E ⊂ P2 have degrees
d, e, then E · E = de. This can be thought of as a version of Bezout’s theorem.

Example 1.5. The Picard group of the smooth quadric Q ⊂ P3 has two free generators
L,M in the form of opposite rulings and hence L ·M = 1. Since the rulings are disjoint
in each family we also have L · L = M ·M = 0, therefore if (a, b), (c, d) ∈ PicQ we have
(a, b) · (c, d) = ad+ bc.

1.2. The canonical class. Given a complete surface S as above, there is a closed diag-
onal embedding ∆ : S ↪→ S×S whose image has codimension two. If NS,S×S denotes the
normal bundle to the image ∆(S), the sheaf of differentials on S is the rank two bundle
ΩS/k = ∆∗(N ∨S,S×S). The canonical line bundle is ωS = ∧2ΩS/k, but we write KS instead

when thinking of it as a divisor on S. The geometric genus of S is dimK H
0(ωS).

1.3. Adjunction. If C ⊂ S is a smooth connected curve, the canonical classes of C and
S obey adjunction. In terms of line bundles, this says that

ωC = ωS ⊗OS(C)|C
But we can also interpret it in terms of divisors and the intersection pairing: taking
degrees gives

2g − 2 = (KS + C) · C

Example 1.6. If C ⊂ S = P2 is a smooth plane curve of degree d, then C ∼ dL for a line
L and KS = −3L, so 2g− 2 = (dL− 3L) · dL⇒ 2g− 2 = d(d− 3)⇒ g = 1

2
(d− 1)(d− 2).

Example 1.7. Similarly if Q ⊂ P3 is the smooth quadric, then KQ = (−2,−2) and if
C ⊂ Q is a curve of genus g and type (a, b) as a divisor, then 2g−2 = (a−2, b−2)·(a, b) =
2ab− 2a− 2b which explains a result from the previous talks, namely g = (a− 1)(b− 1).

Example 1.8. Let C ⊂ P3 be a curve of degree d and genus g and let C ⊂ S ⊂ P3 be a
general surface of degree s containing C. Then PicS ∼= Z2 is freely generated by OS(C)
and OS(1): I’ll just call these C and H. Then the intersection theory on S is given by

(a) H2 = s
(b) CH = d
(c) C2 = 4d+ 2g − 2− ds

Parts (a) and (b) come from geometric interpretation of degree. For Part (c), adjunction
applied to S ⊂ P3 gives KS = (s− 4)H: applying adjunction to C ⊂ S gives

C · (C + (s− 4)H) = C · (C +KS) = 2g − 2

and solving for the self-intersection C2 gives part (c).

2. Numerical equivalence and the Néron-Severi group

Two divisors E,D on a surface S are numerically equivalent if the intersection pairing
cannot tell them apart. More formally, we make the following definition.
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Definition 2.1. Two divisors E,D ∈ DivS are numerically equivalent if E · C = D · C
for each C ∈ DivS, in which case we write E ≡ D. We also let Div0 S ⊂ DivS be the
subgroup of divisors which are numerically equivalent to zero.

Example 2.2. Since the intersection pairing is preserved under linear equivalence, E ∼
D ⇒ E ≡ D, so PrinS ⊂ Div0 S and we obtain a subgroup Pic0 S ⊂ PicS of divisors
numerically equivalent to zero. In the previous two examples this is the zero subgroup.

Definition 2.3. The Néron-Severi group of S is N1(S) = Div S/Div0 S.

Remark 2.4. We note a few facts about the Néron-Severi group.

(1) It is a theorem that N1(S) is a finitely generated free abelian group.
(2) The intersection pairing extends to N1(S)×N1(S)→ Z. BUT we think of N1 as

the line bundles and N1 as the curves, so this can be written differently.
(3) Over k = C, we have N1(S) = H2(S,Z) ∩H1,1(S,C).

3. Positive cones of divisors on a surface

Recall that there are various notions of positivity of a line bundle L ∈ PicS: L is
very ample if there is a closed embedding f : S ↪→ Pn with L = f ∗O(1); L is ample if
there is m > 0 such that L⊗m is very ample. One can recognize positivity in terms of the
intersection pairing.

Theorem 3.1. (Nakai Criterion) A divisor D on S is ample if and only if D ·D > 0
and D · C > 0 for every irreducible curve C ⊂ S.

3.1. Real divisors: Nef and ample cones. Given S, we form the real Euclidean space

N1(S)R = N1(S)⊗Z R

and think of its elements as Weil divisors D =
∑
ciCi with ci ∈ R. The intersection

pairing extends to N1(S)R, so in view of the Nakai criterion, we’ll say that D is ample if

D2 > 0 and D · C > 0 for each irreducible curve C ⊂ S. Similarly we will say that D is
numerically effective if D · C ≥ 0 for all irreducible curves C ⊂ S.

Definition 3.2. The ample cone Amp(S) ⊂ N1(S)R is the set of ample R-divisors and
the Nef cone Nef(S) is the set of numerically effective divisors.

Theorem 3.3. Let S be a surface. Then

(1) Both Amp(S) ⊂ N1(S)R and Nef(S) ⊂ N1(S)R are cones.

(2) Amp(S) = Nef(S).
(3) Nef(S)0 = Amp(S).

Example 3.4. When S = P2, N1(S)R ∼= R and these cones are just the positive and
non-negative reals. When S = Q ∼= P1 × P1, these cones are the strictly positive first
quadrant and non-negative first quadrant.
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3.2. Cones of curves. Thinking of homology classes instead of cohomology classes, we
can also form the cone of curves N1(S)R = N1(S) ⊗Z R. It’s the same real vector space
as before, but the emphasis is on Weil divisors and curves instead of line bundles. Here
there is another cone to consider.

Definition 3.5. The Cone of curves on S is the set NE(S) ⊂ N1(S)R given by

NE(S) = {
∑

aiCi : 0 ≤ ai ∈ R and Ci ⊂ S is an irreducible curve}

Topologically you would think of this as a subset of H2(S,R). Essentially from Nakai’s
criterion, the cone of curves is related to the ample cone in the expected way:

Theorem 3.6. NE(S) = {γ ∈ N1(S)R : γ ·D ≥ 0 for all D ∈ Nef (S)}.

4. An open question

Little is known about these cones, though there are examples showing that they can be
very complicated when N1(S)R has dimension three or more. To make the pictures more
tractable, we ask the following question:

Question 4.1. Let C ⊂ P3 be a curve and for d� 0, let C ⊂ S ⊂ P3 be a general surface
of large degree. Then PicS ∼= Z2 generated by OS(1) and OS(C). What is NEF(S)?

4.1. Dolcetti and Ellia (1997). About twenty years ago Dolcetti and Ellia [2] answered
this question for the complete intersection C = Sm∩Sn of surfaces of degrees n ≤ m. The
result is that the effective cone is bounded by the two rays R+[C] and R+[nH −C]. The
calculation is easy and not surprising. General curves are more complicated and there
have been no other results in the literature.

4.2. Chen and Nollet (2015). Dawei Chen and I worked on this problem for a while
after my 2013 visit to Boston University. We tried the simplest non-complete intersection,
namely the twisted cubic curve. We obtained the following partial results before we stalled.

Proposition 4.2. Let IC be the ideal of the twisted cubic curve C ⊂ P3. Then the
saturated ideal of the scheme defined by ideal sheaf InC is precisely InC.

We thought this was no big deal, but the following summer a preprint of seven authors
[1] appeared on the algebraic geometry arXiv where this was the main theorem! They
had a more general version for curves with similar minimal resolutions, but the proof was
essentially the same. They also gave examples showing that this sort of result is rare.

The NEF cones for smooth quadric and cubic surfaces are well known, so the first
interesting case of the question arises when d = 4.

Proposition 4.3. Let C ⊂ S be a general quartic surface. Then

(1) NE(S) is the cone bounded by R+[C] and R+[16H − 9C].
(2) Amp(S) is the cone bounded by R+[2H + 3C] and R+[66H − 37C].

The natural “expected” second bounding ray for NE(S) would have been R+[2H−C],
so the cone of curves is larger than expected, something of a surprise. Our method uses
special calculations due to Kovács [4] based on the fact that S is a K3 surface and the fact
that (X, Y ) = (33, 8) is the smallest integer solution to Pell’s equation 1 = X2 − 17Y 2.
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