THE NOETHER-LEFSCHETZ THEOREM

Scott Nollet

1. EXAMPLES

Earlier we defined the class group ClX of Weil divisors for an algebraic variety X and the Cartier class group CaClX of Cartier divisors (which is isomorphic to the Picard group of isomorphism classes of line bundles with tensor product). These groups are isomorphic when X is smooth. In general it is quite difficult to compute these groups. In this section we will give some classic examples without proof.

Example 1. Earlier we showed that Cl $\mathbb{C}^n = 0$ and Cl $\mathbb{P}^n \cong \mathbb{Z}$, generated by a hyperplane $H \subset \mathbb{P}^n$.

Example 2. A very classical example understood in the 1800s is that of a smooth projective curve X. A divisor D on X can be written $\sum n_i p_i$ where p_i are points on X, and we can define deg $D = \sum n_i$. This gives a surjective homomorphism deg : PicX $\rightarrow \mathbb{Z}$ whose kernel consists of the degree 0 divisors, denoted Pic⁰X. Via exponential sequence

$$0 \to \mathbb{Z} \to \mathcal{O} \to \mathcal{O}^* \to 0$$

and the isomorphisms $\operatorname{Pic} X \cong H^1(X, \mathcal{O}^*)$ and $H^2(X, \mathbb{Z}) \cong \mathbb{Z}$, the degree map can be identified with the cohomology map $H^1(X, \mathcal{O}^*) \to H^2(X, \mathbb{Z})$, so the kernel $\operatorname{Pic}^0 X$ is the quotient $H^1(X, \mathcal{O})/H^1(X, \mathbb{Z})$, which shows that $\operatorname{Pic}^0 X$ is an abelian variety (Lie group) of dimension g. In particular, if X is not a rational curve (i.e. g > 0), then $\operatorname{Pic} X$ is not a discrete group.

Remark 1. If $X \subset \mathbb{P}^{n-1} \subset \mathbb{P}^n$ is a variety, one can consider the cone C(X) over X in \mathbb{P}^n with vertex p. Via the projection map $C(X) \to X$ (whose fibres are lines), one can pull back divisors which gives an isomorphism $\operatorname{Cl} X \to \operatorname{Cl} C(X)$.

Example 3. The surface $X \subset \mathbb{P}^3$ given by equation $xy - z^2 = 0$ is a cone over the a smooth plane conic (with same equation) in \mathbb{P}^2 . The plane conic is isomorphic to \mathbb{P}^1 , so $\operatorname{Pic}\mathbb{P}^1 \cong \mathbb{Z}$ is generated by a point by Example 1 and hence $\operatorname{Cl} X \cong \mathbb{Z}$ generated by a ruling. This ruling is not a Cartier divisor, but the union of two rulings is (it's a hyperplane section of X, see previous talk) and it generates the PicX. Thus Pic $X \subset \operatorname{Cl} X$ are both isomorphic to \mathbb{Z} with cokernel $\mathbb{Z}/2\mathbb{Z}$.

SCOTT NOLLET

Remark 2. In general Picard groups don't work well with products, but there are two nice special cases:

(1) Pic $(X \times \mathbb{C}^n) \cong$ Pic X, the isomorphism being given by pulling back line bundles under the projection map $X \times \mathbb{C}_n \to X$.

(2) Pic $(X \times \mathbb{P}^n) \cong$ Pic $X \oplus \mathbb{Z}$. Here the projection $X \times \mathbb{P}^n \to X$ induces an injection Pic $X \to$ Pic $(X \times \mathbb{P}^n)$. One uses the fibres $\cong \mathbb{P}^n$ (with Picard group \mathbb{Z}) to establish the splitting.

Example 4. Consider the smooth quadric surface $X \subset \mathbb{P}^3$ given by equation xy - zw = 0. It's not hard to show that X is exactly the image of a closed embedding $\mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$ given by $(a, b), (c, d) \mapsto (ac, bd, ad, bc)$, the Segre embedding. Now Pic $\mathbb{P}^1 \times \mathbb{P}^1 \cong \mathbb{Z} \oplus \mathbb{Z}$ by Remark 2 above. Moreover, it is generated by opposite rulings on X.

Remark 3. It is a general fact that if $f : \widetilde{X} \to X$ is the blow-up at a point, then Pic $\widetilde{X} \cong$ Pic $X \times \mathbb{Z}$, the new generator being given by the exceptional divisor.

Example 5. If $X \subset \mathbb{P}^3$ is a general cubic surface, it's a rational surface, isomorphic to \mathbb{P}^2 with 6 points blown up. Applying Remark 3 successively, we find that Pic $X \cong \mathbb{Z}^7$, generated by the pull-back of a line on \mathbb{P}^2 and the 6 exceptional divisors. It is well known that in fact X contains 27 lines.

2. Noether-Lefschetz Theorem

If $X \subset \mathbb{P}^n$ is a projective variety and $H \subset \mathbb{P}^n$ is a general hyperplane, one can consider the subvariety $X \cap H \subset X$. There is a restriction map of line bundles ρ : Pic $X \to \text{Pic } X \cap H$. We now consider the following general question: when is ρ an isomorphism? Lefschetz proved a result, which was extended by Grothendieck:

Grothendieck-Lefschetz Theorem. Let $X \subset \mathbb{P}^n$ be a smooth subvariety and let H be a general hyperplane. Then

$$\rho : \operatorname{Pic} X \to \operatorname{Pic} X \cap H$$

is an isomorphism if $\dim X > 3$.

Example 6. Let $X = \mathbb{P}^n$ for some n > 3. One can use the monomials of degree d in the homogeneous coordinates to embed X into a larger projective space \mathbb{P}^N ; this map is called the d-uple embedding $F_d : \mathbb{P}^n \to \mathbb{P}^N$ and the pull-back under F_d of hyperplanes $H \subset \mathbb{P}^N$ gives all the degree d hypersurfaces in \mathbb{P}^n . Applying the Grothendieck-Lefschetz theorem, we conclude that for n > 3, the general hypersurface $S_d \subset \mathbb{P}^n$ has Pic $S_d \cong \mathbb{Z}$ generated by $H \cap S_d$, where H is a general hyperplane in \mathbb{P}^n .

Question. Under what conditions is it true that the restriction map $\operatorname{Pic} \mathbb{P}^n \to \operatorname{Pic} S_d$ is an isomorphism for a general hypersurface $S_d \subset \mathbb{P}^n$ of degree d?

Special Cases: We can answer the question in some special cases fairly easily: (1) If n > 3, the answer is yes by the Grothendieck-Lefschetz theorem.

(2) If n = 1, the question is silly because the general hypersurface is a finite set of points, which have trivial Picard group.

(3) If n = 2, the answer is yet only if d = 1. For d = 2 the cokernel is a group of order 2, while for d > 2 the hypersurface S_d is a smooth projective curve of genus $g = \frac{1}{2}(d-1)(d-2) > 0$, which has infinitely generated Picard group by Example 2.

(4) The case n = 3 is quite interesting. Here we consider different values of d:

- (a) d = 1 the answer is yes.
- (b) d = 2 the answer is no by Example 4.
- (c) d = 3 the answer is no by Example 5.

(d) $d \ge 4$ here things are not obvious at all, but Noether had an inspired answer, which is that the answer should be yes.

Noether's Idea: The cases d = 2 and d = 3 fail in large part because general quadric and cubic surfaces necessarily contain LINES. Noether saw that the general QUARTIC equation cannot contain any lines by the following dimension count:

• The space of all quartics is given by their equations modulo scalar. There are 35 monomials of degree 4 in 4 variables, so this family has dimension 34.

• How many quartics contain lines? The family of lines in \mathbb{P}^3 has dimension 4, it is given by the Grassmann variety $\operatorname{Grass}_2(4)$. A fixed line L has ideal generated by two linear forms, giving a resolution

$$0 \rightarrow S(-2) \rightarrow S(-1)^2 \rightarrow I_L \rightarrow 0$$

from which one can read off $\dim(I_L)_4 = 30$, so modulo scalars there is a 29-dimensional family of quartics containing a fixed line. Adding up, the quartics containing a line form a family of dimension 33 < 34.

It's hard to extend Noether's idea, because there are way too many families of curves lying on surfaces. However using complex methods and monodromy, Lefschetz [L] was able finish the job:

Noether-Lefschetz Theorem. If $S_d \subset \mathbb{P}^3$ is a general surface of degree $d \ge 4$, then the restriction map $\operatorname{Pic} \mathbb{P}^n \to \operatorname{Pic} S_d$ is an isomorphism.

Remark 4. In the 1960s, Mumford proposed the challenge of actually writing down a degree d = 4 polynomial whose zero set S_4 is a smooth surface satisfying the conclusion of the Noether-Lefschetz theorem. This was not achieved until the last few years by Ronald van Luijk [vL]. It appears on page 1 of Volume 1 in the new journal "Algebra Number Theory".

3. Recent developments

While the Noether-Lefschetz theorem was proved in the 1920s, there was a revival of interest in the subject around 1990. In 1985 Griffiths and Harris gave a new algebraic proof of the theorem [GH]. There were several new approaches using infinitesimal variations of Hodge structures, and generalizations to singular surfaces. Here's a fun variant of the theorem from Angelo Lopez' 1990 Ph.D. thesis.

SCOTT NOLLET

Theorem (Lopez). Let $C \subset \mathbb{P}^3$ be a smooth connected curve. If the homogeneous ideal for C is generated by polynomials of degree $\leq d - 1$, then the general degree d surface S_d containing C is smooth with Picard group freely generated by the plane $H \cap S_d$ and the divisor $C \subset S_d$.

The above theorem is appealing because the geometry entirely determines the Picard group. Very recently John Brevik and I extended this result to arbitrary curves in \mathbb{P}^3 , which may have many components, may have isolated or embedded points, or even by non-reduced in the scheme-theoretic sense [BN]. The specific statement is this:

Theorem (Brevik and Nollet). Let $Z \subset \mathbb{P}^3$ be an arbitrary closed subscheme of dimension ≤ 1 which lies on a surface with isolated singularities and suppose that the homogeneous ideal of Z is generated by polynomials of degree $\leq d-1$. Then the general degree d surface S_d containing Z is normal with class group freely generated by the plane $H \cap S_d$ and the supports of the curve components of Z.

Remark 5. The theorem above recovers several results in the area, for example:

- If $Z = \emptyset$, we recover the original Noether-Lefschetz theorem.
- If Z is a smooth connected curve, we recover Lopez' theorem.

• If Z is zero dimensional, we recover a theorem of Joshi, which says that the Picard group of the general singular surface is generated by a plane H.

References

[BN]	J.	Brevik	and	S.	Nollet,	No ether-Lefschetz	theorem	with	base	locus,	preprint
	(20)	009).									

- [GH] P. Griffiths and J. Harris, On the Noether-Lefschetz theorem and some remarks on codimension two cycles, Math. Ann. **271** (1985), 31–51.
- [L] S. Lefschetz, *L'analysis situs et la géometrie algébrique*, Gauthier-Villars, Paris, 1924.
- [vL] R. van Luijk, K3 surfaces with Picard number one and infinitelyl many rational points, Algebra Number Theory **1** (2007), 1–15.