MORSE THEORY

1. INTRODUCTION TO MORSE THEORY

Let M and N be smooth manifolds, and let $F: M \to N$ be a smooth map. This induces $DF_x: T_xM \to T_{f(x)}N$.

Definition 1.1. $x \in M$ is critical for F if $DF_x < \min \{\dim M, \dim N\}$. Otherwise, x is regular.

 $Cr_F = the set of critical points of F.$

Definition 1.2. $y \in N$ is a critical value if $F^{-1}(y)$ contains a critical point. Otherwise it is a regular value.

 Δ_F = the set of critical values of F = **Discriminant set.**

Theorem 1.3. (Morse-Sard-Federer Theorem)

- (1) Δ_F has measure 0.
- (2) If F(M) has nonempty interior, then the set of regular values is dense in the image F(M).

Examples

- (1) Standard $N = \mathbb{R}$. $x \in M$ is critical implies $df_x = 0$.
- (2) Torus maps to height function, 4 critical points.
- (3) horizontal torus maps via height function, 2 critical points, union of two circles (top and bottom) as critical sets.
- (4) If $M \subset \mathbb{R}^n$, then $f : \mathbb{R}^n \to \mathbb{R}$ is critical at p on M if its tangent space T_pM is tangent to a level set (in \mathbb{R}^n) of f.
- (5) If F is proper analytic between analytic manifolds, then Δ_F is a union of submanifolds of N.

Recall if M is a manifold and X is a vector field on M and f is a smooth (real-valued) function, X(f) = df(X).

Lemma 1.4. If p_0 is a critical point of f, and of X, X', Y, Y' are vector fields such that

$$X(p_0) = X'(p_0), Y(p_0) = Y'(p_0),$$

then

$$(X(Yf))(p_0) = (X'(Y'f))(p_0) = (Y(Xf))(p_0)$$

(not usually true).

Proof. $[(XY - YX) f](p_0) = ([X, Y] f)(p_0) = df([X, Y])(p_0) = 0.$ Since $((X - X') f)(p_0) = 0$, etc. the result follows.

Definition 1.5. If p_0 is a critical point for $f : M \to \mathbb{R}$, define the Hessian as $H_{f,p_0} : T_{p_0}M \times T_{p_0}M \to \mathbb{R}$, where

$$H_{f,p_0}(X_0, Y_0) = (XYf)(p_0)$$

such that $X(p_0) = X_0$, $Y(p_0) = Y_0$. This is well-defined and symmetric, by the Lemma.

If $X = \sum X^j \partial_j$, $Y = \sum Y^i \partial_i$ in local coordinates at p_0 ,

$$H_{f,p_0}(X_0, Y_0) = \sum_{ij} h_{ij} X^i X^j$$
$$h_{ij} = \partial_i \partial_j f(p_0).$$

Definition 1.6. p_0 is nondegenerate if H is nondegenerate, ie H(X,Y) = 0 for all Y implies X = 0.

If so, $f(x) = f(p_0) + \frac{1}{2}H_{p_0}(x, x) + O(|x|^3)$.

Definition 1.7. f is called a Morse function if all critical points are nondegenerate.

Note that H is nondegenerate iff det $(h_{ij}) \neq 0$. For example, $f(x) = x^3$ from \mathbb{R} to \mathbb{R} has H = 0 at x = 0. The "lying down" torus has degenerate critical points (H rank 1 instead of 2).

Given a symmetric bilinear map $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, there is a basis with respect to which it's diagonal. Nondegenerate implies the matrix is full rank. And the number of negative eigenvalues is called the **index** of the critical point. This is also the largest dimension of a subspace on which H is negative definite. Let

$$\lambda(f, p_0) = \text{index of } f \text{ at } p_0.$$

Define the Morse polynomial

$$P_F(t) = \sum_{p \in C_{rF}} t^{\lambda(f,p)} = \sum_{\lambda \in \mathbb{Z}} \mu_f(\lambda) t^{\lambda(f,p)}$$

where $\mu_f(\lambda)$ is the number of critical points with index λ .

Theorem 1.8. ("Morse lemma") If f is Morse and p is a nondegenerate critical point, there exists a neighborhood U of p and coordinates such that $x^i(p) = 0$ and such that $f(x) = f(p_0) + \frac{1}{2}H_{f,p}(x)$.

Corollary 1.9. There exist coordinates such that

$$f(x) = f(p_0) - \sum_{j=1}^{\lambda} (x^i)^2 + \sum_{j=\lambda+1}^{m} (x^i)^2$$

These are called coordinates adapted to f.

2. EXISTENCE OF MORSE FUNCTIONS

Assume M is imbedded in $E = \mathbb{R}^{2m+1}$, with some metric. Let Λ be a smooth manifold. Suppose $F : \Lambda \times E \to \mathbb{R}$ is smooth, which restricts to $f : \Lambda \times M \to \mathbb{R}$. Let $f_{\lambda} : \lambda \times M \to \mathbb{R}$ be the family of functions. There is a natural surjection by restriction:

$$p_x: E^* \to T_x^* M.$$

So $df_{\lambda}(x) = P dF_{\lambda}(x)$. Let

$$\partial^{x} f : \Lambda \to T_{x}^{*} M$$
$$\lambda \mapsto df_{\lambda}(x).$$

Definition 2.1. We say $F : \Lambda \times E \to \mathbb{R}$ is sufficiently large relative to M if dim $\Lambda \ge \dim M$ and $\forall x \in M$, the point $0 \in T_x^*M$ is a regular value for $\partial^* f$.

MORSE THEORY

Theorem 2.2. If F is sufficiently large, then there exists a subset $\Lambda_{\infty} \subset \Lambda$ of measure zero such that f_{λ} is Morse for all $\lambda \in \Lambda - \Lambda_{\infty}$.

Example: let $\Lambda = E^*$, let $H = E^* \times E \to \mathbb{R}$. (evaluation). Claim : this is sufficiently large. This is the height function.

Example: Let $\Lambda = E$, let $F = R : E \times E \to \mathbb{R}$, $R(\lambda, x) = \frac{1}{2} |x - \lambda|^2$. This R is sufficiently large. The resulting Morse functions are **exhaustive**, ie the sublevel sets $\{x \in M : f(x) \le s\}$ are compact (assuming M is properly embedded in E, equivalent to M being embedded in E as a closed subspace).

Example: Let Λ be the set of positive definite matrices on E. Let $F : \Lambda \to E$ be $(A, x) \mapsto \frac{1}{2}(Ax, x)$. This F is sufficiently large and exhaustive.

The point: there exist Morse functions.

Definition 2.3. A Morse function is called **resonant** if two critical points have the same critical value.

Theorem 2.4. Any resonant Morse function on a compact manifold can be approximated arbitrarily closely in the C^2 topology by a nonresonant Morse function.

3. The topology of Morse functions

3.1. Surgery, handle attachment, cobordism. Let D^k be the closed k-disk. Let \mathring{D}^k denote the interior, $\partial D^k = S^{k-1}$ be the boundary.

Given X and a map from $\partial D^k \to X$, we can do a handle attachment (cell attachment). A good way to build CW complexes. But this bad in the manifold world.

Instead, we will do surgery (attaching handles one dimension up). Let M be a smooth manifold, given an embedding of a sphere into M and a trivial normal bundle that extends the embedding. (more next time)

3.2. Department of Mathematics, Texas Christian University, Fort Worth, Texas 76129, USA