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1. Riemann surfaces and uniformization

Let S be a Riemann surface, i.e. a connected Hausdorff space such
that a space of continuous, complex-valued functions defined on sub-
domains of S is designated as the space of holomorphic functions,
and such that

(1) for every point p ∈ S, there exists a neighborhood U of p and
a holomorphic function ζ : U → C that is a homeomorphism
onto its image, which is a domain in C; these coordinate charts
are called local parameters.

(2) the transition functions φU ◦φ−1V are holomorphic where defined.
(3) If D ⊆ S is a domain and f : D → C is a function, then f is

holomorphic if and only if for every local parameter ζ defined in
any U ⊆ D, the function f ◦ ζ−1 is holomorphic in the ordinary
sense on ζ (U) ⊆ C.

It follows that S is a surface (i.e. locally homeomorphic to R2), it is
orientable, and it is triangulable (the last one is not so obvious).
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Examples of Riemann surfaces include C, the Riemann sphere Ĉ =
C ∪ {∞} [z is a local parameter on U = C; ζ = 1

z
is a local pa-

rameter on Ĉ \ {0}], every domain in C, eg. the upper half plane
H = {z ∈ C : Imz > 0}, any subdomain of a Riemann surface. Tori,
hyperbolic surfaces, etc.

A homeomorphism h between two Riemann surfaces S1 and S2 is
called conformal if h and h−1 take (germs of ) holomorphic functions
to (germs of) holomorphic functions. Note that one may use a local
parameter to measure angles on a Riemann surface. Conformal maps
are exactly the angle-preserving and orientation-preserving maps from
domains in R2 to other domains in R2.

The ring of holomorphic functions on a noncompact Riemann surface
and the field of meromorphic functions on any Riemann surface each
determine the Riemann surface uniquely, up to a conformal mapping
and a reflection.

Gauss proved in 1822 that at any point on any sufficiently smooth
oriented surface Σ in Euclidean space with the induced metric, there
exists a neighborhood which can be mapped conformally onto a plane
domain. (In fact, he showed that any metric on the surface is conformal
to the Euclidean metric.) Therefore, any such Σ can be made into
a Riemann surface by declaring a nonconstant continuous complex-
valued function g : D → C on a domain D ⊆ Σ to be holomorphic if it
is locally, except at isolated points, a conformal mapping.

Here is the idea of Gauss’ proof. It turns out the embedding is
irrelevant. All that matters is the existence of a Riemannian metric

ds2 = E (x, y) dx2 + 2F (x, y) dxdy +G (x, y) dy2.

A local parameter on a part of Σ is a complex-valued function ζ =
u (x, y) + iv (x, y) whose Jacobian is positive and such that the metric
is

ds2 = ρ (u, v)
(
du2 + dv2

)
;

the real functions u, v are called isothermal coordinates. To find
these, do the following: choose a local basis of eigenvectors of the matrix(
E F
F G

)
; these will be vector fields that are linearly independent in

a neighborhood of the point in question. Consider the integral curves
of these two vector fields to be level sets of the functions u and v. By
choosing one integral curve of the first vector field, we can choose any
increasing function along that curve, and its values would define the
values of u on the whole neighborhood (by extending the function to be
constant on the integral curves of the other vector field). By switching
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the roles of the two vector fields, we may define the function v. Then

the given metric in these coordinates has the form

(
E 0
0 G

)
. If we

change variables again, we can make E = G. But we realize that we run
into trouble with this approach if there is one eigenvalue of multiplicity
two.

What Gauss proved is that if E,F,G are real analytic functions of
(x, y), then the isothermal coordinates (u, v) exist. Since then mathe-
maticians have found that you can weaken the hypothesis (eg Morrey
showed in 1938 that it is enough to assume E,F,G are measurable and
E+G√
EG−F 2 is bounded. Here is the rough idea of how this is done.

Given that

ds2 = E (x, y) dx2 + 2F (x, y) dxdy +G (x, y) dy2,

we write in complex coordinates z = x+ iy to get

ds2 = λ |dz + µdz|2 ,
where

λ =
1

4

(
E +G+ 2

√
EG− F 2

)
,

µ =
E −G+ 2iF

4λ
.

The isothermal coordinate case would be the case where F = 0, E = G,
so λ = E, µ = 0. So we wish to find new coordinates u, v, w = u + iv
where

ds2 = ρ
(
dx2 + dy2

)
= ρ |dw|2

= ρ |wz|2
∣∣∣∣dz +

wz
wz
dz

∣∣∣∣2 (in old coords)

So it turns out that we can find (u, v) isothermal if and only if we can
find a complex diffeomorphism z 7→ w (z) such that

∂w

∂z
= µ

∂w

∂z
.

It can be shown that there exists a solution to this equation whenever
‖µ‖∞ < 1.

Another geometric way to show that you can get isothermal coordi-
nates is using the Hodge star operator. Note that (u, v) is isothermal if
and only if ∗du = dv [see below for explanation (1)]. By standard ellip-
tic theory, u can be chosen to be harmonic (∆u = 0) near a given point,
with du nonvanishing [see below for explanation (2)]. By the Poincaré
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lemma, ∗du = dv has a local solution v exactly when d ∗ du = 0, ie
when − ∗ d ∗ du = ∆u = 0. Since du is nonzero, ∗2 = −1 on one-
forms, we have du and dv are necessarily linearly independent, so we
get isothermal coordinates!

[Explanations of details:

(1) The Hodge star operator ∗ is defined on p-forms on a Riemann-
ian manifold M by the equation α ∧ ∗β = (α, β) dV , where
α and β are any p-forms and dV is the volume form, and
( • , • ) is the pointwise inner product of forms. This point-
wise inner product is defined using the Riemannian metric; if
e1, ..., en is a local orthonormal frame of the tangent bundle

TM , then
{
e∗i1 ∧ ... ∧ e

∗
ip

}
is declared to be a local orthonor-

mal frame of ΛpT ∗M and thereby determines the metric on
ΛpT ∗M . For the particular case of 1-forms, it turns out that if
gjk := 〈∂xj , ∂xk〉 then

(
dxj, dxk

)
= gjk, where

(
gjk
)

is the in-
verse matrix of (gjk). Also, the volume form in any coordinates
is dV =

√
gdx1 ∧ ... ∧ dxn, where g = det (gij). So if we com-

pute the Hodge star operator on 1-forms on a 2-manifold, we get
for example that dx1 ∧ ∗dx1 = (dx1, dx1) dV , so dx1 ∧ ∗dx1 =
g11
√
gdx1 ∧ dx2, and similarly dx2 ∧ ∗dx1 = g21

√
gdx1 ∧ dx2,

from which we can deduce that ∗dx1 = −g21√gdx1 +g11
√
gdx2.

Similarly, ∗dx2 = −g12√gdx2 + g22
√
gdx1. So if ∗dx1 = dx2,

then g21 = g12 = 0 and g11
√
g = 1, so that 1

g11

√
g11g22 = 1, so

g11 = g22. The converse is also true.
(2) Since ∆ is elliptic, it has a unique solution to the Dirichlet prob-

lem. That is, given a bounded region with reasonable bound-
ary and a function on the boundary, there is a unique harmonic
(∆u = 0) function that has those boundary values. So by choos-
ing a small neighborhood around the origin of the coordinate
system, we may set the boundary values so that the value of
the function is cx1 on the boundary, with c large. By solving
the Dirichlet problem at taking c to +∞, we can guarantee that
the solution, which must be close to cx1, must satisfy du 6= 0 at
the origin for some large c, and thus it satisfies du 6= 0 nearby.

]
Note that the Gauss curvature in isothermal coordinates is

K = − 1

2ρ

(
∂

∂u

(
1

ρ

∂ρ

∂u

)
+

∂

∂v

(
1

ρ

∂ρ

∂v

))
,
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So, for instance, if ρ = 1
v2

, then

K = −1

2
v2
∂

∂v

(
v2
(
−2v−3

))
= v2

∂

∂v

(
v−1
)

= −1.

Also, the Laplacian in these coordinates is

∆ = − 1
√
g
∂j
(
gij
√
g∂i
)

= −1

ρ

(
∂2u + ∂2v

)
.

So, every Riemann surface can be defined by putting a Riemannian
metric onto an orientable, sufficiently smooth surface. Surprisingly,
one may require that this metric is complete (ie.every geodesic can be
extended indefinitely) and has constant Gauss curvature +1, −1, or 0.
How does one find this metric?

The uniformization theorem proved by Klein, Poincaré, Koebe
in 1882-1907 states that every simply connected Riemann surface is
conformal to one of

Ĉ, C,H.
Then , for any Riemann surface S, we have S = S̃�G where S̃ is the
universal cover and G is the fundamental group. The universal cover

S̃ can be made into a Riemann surface by lifting the local parameters.
Note then that the deck transformations act by conformal maps. Then

S̃ must be conformal to one of the three surfaces above, and the cov-
ering transformation group G is a discrete, fixed point free group of

conformal mappings of S̃ to itself, i.e. conformal automorphisms. In

the particular case of S̃ = C, the only differentiable holomorphic maps
are rational functions. But in order for the map to be a bijection, it
must have only one zero and one pole, so it must be a discrete subgroup
of Möbius transformations

z 7→ az + b

cz + d
, ad− bc = 1.

If S̃ = Ĉ, G can only contain the identity (because no nontrivial quo-
tients of the sphere are oriented surfaces), so S is the Riemann sphere.

If S̃ = C, then G must be a discrete subgroup of the (orientation-
preserving) conformal mappings of C to itself, which are actually the
subgroup of Möbius transformations that fix infinity, so c = 0 and they
are of the form z 7→ az + b. But the only way to get a discrete, fixed
point free subgroup out of this is to have a = d = 1, so the group
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G can only contain Euclidean translations. In this case, we can show
that either G is trivial ( S is conformal to C ), G is generated by one
translation (say by z 7→ z + 1, and S is conformal to C \ {0}), or G
is generated by two linearly independent translations (say z 7→ z + 1
and z 7→ z + τ with Imτ > 0, in which case S is conformal to a
torus). Observe that we may always rotate and rescale so that one of
the generating translations is z 7→ z + 1.

If S̃ is H, then G is a discrete group of Möbius transformations such
that a, b, c, d ∈ R. Such groups are called Fuchsian groups. For a
Riemann surface, the Fuchsian group G must be fixed point free.

Now, Ĉ carries a complete metric of Gauss curvature 1 (pulled back
from the standard S2 ⊆ R3 by the iinverse of stereographic projection),
C has a complete metric of curvature 0, and H has the complete metric

ds2 =
dx2 + dy2

y2
.

In each case, the group G acts by isometries.

Surfaces of the form Ĉ�G carry a (complete) metric of constant
Gauss curvature −1, and these are called hyperbolic surfaces. Note
that by the Gauss-Bonnet Theorem, if the area of the hyperbolic surface
is finite, then ∫

Ĉ�G
(−1) dA = 2πχ

(
Ĉ�G

)
.

where χ
(
Ĉ�G

)
is the Euler characteristic. Therefore, hyperbolic sur-

faces with finite area must have negative Euler characteristics. There-
fore, among closed orientable surfaces, the sphere carries a metric of
constant curvature +1, the torus carries a metric of constant curvature
0, and genus g surfaces with g > 1 carry a metric of constant curvature
−1, since χ = 2 − 2g. See an Escher print to see the fundamental
domains of the genus g surfaces inside the upper half plane or Poincaré
disk. Further, any given metric on these surfaces must be globally
conformal to one of those specific constant curvature metrics.

When the surface is noncompact, the Euler characteristic is not
enough to determine whether the surface is hyperbolic or flat (note
that the metric cannot have constant curvature +1 because S2 can not
have noncompact quotients). For example, consider these noncompact
Riemann surfaces (use the standard metric in C = R2 to start out).

Sa,b = {z ∈ C : a < |z| < b} , a, b ∈ (0,∞)

S0 = C \ {0}
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Both of these surfaces have Euler characteristic 0 (both homotopic to
the circle). Observe that exp : C → C \ {0} is a map that is a lo-
cal (conformal) diffeomorphism (with local inverse w = log (z) with
some branch). Therefore, this is the universal covering map, and the
(flat) metric upstairs can be pushed down to a metric on the punc-
tured plane. Therefore, the standard metric on the punctured plane S0

is conformal to the flat Euclidean metric (which makes this a metric
cylinder). Specifically, observe that ds2 = |dw|2 = 1

|z|2 |dz|
2 is the flat

metric on the punctured plane, conformal to the original metric |dz|2.
As a consequence, we see that by using the the stereographic projection
that the sphere with two punctures is conformal to this same complete
flat metric, that of the infinite flat cylinder. On the other hand, ob-
serve that we can use the following sequence of holomorphic maps to
go from the upper half plane H to Sa,b. First, map the upper half
plane to {z : 0 < Imz < π} via the standard log (z). Then multiply by
−i to get a vertical strip. Then rescale by multiplying by a positive
constant and adding a positive real number to map this to the strip
{z : log a < Rez < log b}. So far all maps have been conformal diffeo-
morphisms. Now map by the conformal covering map z 7→ exp (z) to
get Sa,b. Thus, we may pullback the hyperbolic metric on H to get a
complete hyperbolic metric on Sa,b. So, S0 is a flat Riemann surface,
and Sa,b is a hyperbolic Riemann surface.

Note that there is another way to tell that the complete metric for
Sa,b that is conformal to the original metric must have negative curva-
ture and thus must be conformal to a curvature −1 metric. First, given
any conformal metric ds2 = λ (z) |dz|2, we may average over rotations
so that λ (z) is rotationally symmetric, so that λ depends only on |z|.
Then, observe that since curves approaching both |z| = a and |z| = b
must be infinite in length, λ (z)→∞ as |z| → a or |z| → b. But then
this means that since |dz|2 = dr2 + r2dθ2 in polar coordinates that the
circles |z| = constant have lengths that approach infinity as |z| → a or
b. This cannot happen on the cylinder. Also, for the circle |z| = con-
stant which has minimum length, the lengths increase on either side,
so that the Gauss curvature must be negative. Observe that this rea-
soning does not work for the punctured plane, because then the polar
metric has r → 0 near the puncture, and the circles around the origin
to not have to get to infinite length. Using this same reasoning, we see
that a sphere with 3 or more punctures must be a Riemann surface of
hyperbolic type. Similarly, a plane with two or more punctures must
be of hyperbolic type. A flat torus with one or more punctures has
a covers with at least three punctures, so using analogous reasoning
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we can show that the complete conformal metric for this one is hyper-
bolic. Likewise, a hyperbolic surface with any number of punctures is
conformal to a complete metric of constant curvature −1.

2. Geometry of hyperbolic surfaces

The following results about hyperbolic surfaces will be useful in the
future.

Observe that the infinite geodesics in the upper half plane H are
either vertical lines or semicircular arcs whose center is on the real
axis.

Theorem 1. Let S be a compact hyperbolic surface, and let c be a
closed curve in S that is not homotopic to a constant. Then

(1) c is freely homotopic to a unique closed geodesic γ.
(2) Either γ ⊆ ∂S or γ ∩ ∂S = ∅.
(3) if c is simple, then γ is simple.
(4) if c is a smooth boundary component of S, then γ and c bounded

an imbedded annulus.

Proposition 2. Given c, c′ closed curves on a compact hyperbolic sur-
face such that they are not homotopic to constants and intersect each
other in n points (counted with multiplicity), then the corresponding
closed geodesics γ and γ′ satisfy either γ = γ′ (as points) or γ and γ′

intersect in at most n points.

Lemma 3. For any positive real numbers a, b, c there exists a right-
angled geodesic hexagon in H with nonadjacent side lengths a, b, c. The
hexagon is unique up to isometry.

Proof. Start with a finite vertical geodesic β with Re (β (t)) = 0, and
let α be a geodesic in the first quadrant perpendicular to β at its lower
endpoint, so that it is a semicircular arc centered at 0. Let δ be a
third geodesic that is perpendicular to α at its other endpoint so that
the length of α is a. Let `m = {x+ imx : x > 0} be the set of points
in H such that the distance from β to `m is c. Let γ be the unique
geodesic that is tangent to `m and such that its distance from δ is b.
We realize that distance with a geodesic. Then we connect the point
of tangency with the first curve β to obtain a perpendicular geodesic
of length c. The resulting hexagon has the desired properties. The
hyperbolic trigonometry (laws of sinhs and coshs) forces the other three
side lengths to be determined by a, b, c, thus yielding uniqueness. �

We may now paste two copies of a right-angled hexagon as above
to make a pair of pants (or Y piece), which is a sphere with three
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boundary components of length 2a, 2b, 2c. In general, a pair of pants
is a sphere with three boundary geodesic components.

Proposition 4. For any positive real numbers `1, `2, `3, there exists
a unique pair of pants Y with boundary geodesics α, β, γ of lengths
`1, `2, `3, respectively.

Proof. Existence has already been shown. Given any Y -piece, there
exists a unique simple perpendicular geodesic that connects every pair
of boundary geodesics. Cutting along these three geodesics decomposes
the Y -piece into two isometric right angled hexagons. The lemma can
be used to show uniqueness. �

Next, we can combine pairs of pants together to create a hyperbolic
surface by using a cubic graph G. Such a graph is a finite, 3-regular
connected graph. Each vertex will correspond to a pair of pants, and
each edge will correspond to the gluing of the two boundary compo-
nents.The number V (G) of vertices of G is always an even number, so
we will write it as V (G) = 2g−2. The number of edges is then 3

2
times

as many, so there will be E (G) = 3g − 3 edges. Let {y1, ..., y2g−2} be
the vertices of G, and let {c1, ..., c3g−3} be the edges. We divide each
edge in two, and we number them as ciα for the ci1, ci2, ci3 as the three
half-edges emanating from yi . We write for example ck = (ciµ, cjν)
for the edge that connects yi to yj. A list {(ciµ, cjν)} is called ad-
missible if each symbol occurs exactly once, and we identify yi with
{ci1, ci2, ci3}. Thus the admissible lists correspond exactly to marked
cubic graphs.

Two Y-pieces Y , Y ′ may be glued along a geodesic γ, γ′ boundary
component of length ` via the map

γ (t) = γ′ (α− t) ,
where α, t ∈ R. The number α is called the twist parameter. There-
fore, we may construction the various Riemann surfaces F (G,L,A),
where G = {(ciµ, cjν)}, L = {`1, ..., `3g−3}, A = {α1, ..., α3g−3}, where
the indices within L and A correspond to the edges of G, with L giving
the lengths of the geodesic boundary components of the Y -pieces and
A giving the twist parameters for gluing the Y pieces together.

3. Generalizations

If G is any Fuchsian group (ie even one with torsion and fixed points),
then S = H�G is also a Riemann surface in a natural way. The holo-
morphic and meromorphic functions on S are simply the G-invariant
(or automorphic) functions on H. Similarly, for every integer q, the
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holomorphic and meromorphic q-differentials on S are the holomorphic
and meromorphic functions ϕ on H such that ϕ (x) dzq is G-invariant,
meaning that

ϕ (gz) (g′ (z))
q

= ϕ (z)

for all g ∈ G. These are called automorphic forms, which can be
defined as sections of line bundles over S. A special convention is
needed at elliptic and parabolic fixed points (see Igor’s lecture :) ).

Fuchsian groups are special cases of Kleinian groups, which are
Möbius transformations with a, b, c, d not necessarily real, with the fol-
lowing property. The limit set Λ of G is the set of limit points of
Tz = {g (z) : g ∈ G} for different z ∈ C. The group is called Kleinian

if Λ is not all of Ĉ. In this case, the open dense set Ω = Ĉ \ Λ is
called the region of discontinuity of G, and every component of Ω is
called a component of G. The group G acts properly discontinuously
on Ω, and the quotient Ω�G is a disjoint union of Riemann surfaces.
Ahlfors proved that if a Kleinian group G is finitely generated, the
quotient Ω�G has finitely many components, and each component is a
compact Riemann surface or a compact Riemann surface minus a finite
number of points. Further, the projection Ω → Ω�G is ramified over
at most finitely many points.

4. Algebraic Curves

Let S be a compact Riemann surface. The only holomorphic func-
tions are constants, but the meromorphic functions form a field of al-
gebraic functions of one variable. This means two meromorphic func-
tions, z and w, are connected by an irreducible polynomial equation
with complex coefficients

P (z, w) =
n∑
ν=1

m∑
µ=1

aνµz
νwµ = 0.

Further, if the z and w are suitably chosen, any other meromorphic
function is a rational function of z and w. If so, we say that S is
the Riemann surface of the plane algebraic curve P (z, w) = 0. This
does not mean that S is isomorphic to the zero set of P , or even the
homogeneous 3-variable version of this in CP2. In general the curve
P (z, w) = 0 will have singularities. However, it is true that every com-
pact Riemann surface is isomorphic to a nonsingular algebraic curve in
CP3.
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5. noncompact Riemann surface types

A (noncompact) Riemann surface S with finitely generated funda-
mental group can always be obtained from a compact Riemann surface

Ŝ, of some genus g by removing r > 0 disjoint continua (nonempty com-
pact connected metric spaces). If n of those are points and m = r − n
are nondegenerate continua, we say S has type (g, n,m), or type (g, n)
if m = 0.

A Riemann surface of type (p, n,m) with m > 0 is said to have m
ideal boundary curves. Such an S can always be doubled across
the boundary to obtain a surface Sd of type (2g +m− 1, 2n, 0), which
admits an anticonformal involution j that fixes the ideal boundary
curves C1, ..., Cm. The surface Sd is the Schottky double of S. For

example, the Schottky double of H is Ĉ.

6. Moduli spaces

By the uniformization theorem, every compact Riemann surface of

genus 0 is conformal to a sphere (Ĉ). The conformal type of a compact
surface of genus 1 depends on one complex parameter τ ∈ H. Riemann
computed that the conformal type of a compact Riemann surface of
genus g > 1 depends on 3g − 3 complex parameters (moduli). This
implies that the number of complex parameters for the conformal type
of a surface of type (g, n) is 3g − 3 + n. Similarly, the conformal type
of a surface of type (g, n,m) with m > 0 depends on 6p− 6 + 2n+ 3m
real parameters.

The main aim of Teichmüller theory is to make the dependence of a
Riemann surface of finite type on the complex or real moduli as explicit
as possible. He recognized that the problem becomes more accessible if
we consider more general quasiconformal mappings between Riemann
surfaces.

There are no nontrivial quotients of S2 = Ĉ that are orientable
surfaces, so this is the only manifold and conformal class of a surface
of genus 0.

Given a compact surface of genus 1, it is a torus with universal
cover C, so there exists a metric of constant curvature 0 in its con-
formal class. As explained earlier, the deck transformations must be
conformal transformations, and the only possibility is that the deck
transformation group is generated by two independent translations of
the plane, i.e. two vectors in the plane. By a rotation and dilation, we
can assume the first vector is the number 1, and the second vector is
a complex number τ with Imτ > 0, i.e. τ ∈ H. If the torus defined
by (1, τ1) and (1, τ2) are conformally equivalent, does that mean that
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τ1 = τ2? Yes, because the arguments of τ1 and τ2 must be the same
(otherwise angles would not be preserved by the conformal diffeomor-
phism), and then if they did not have the same magnitude, then the
angle between 1 and 1+τ1 would not be the same as the angle between
1 and 1 + τ2. Therefore, H is the parameter space for the set of all
conformal types of tori.

We now work on the hyperbolic space, and we allow surfaces with
boundary. Let 2g + n ≥ 3, and let Fg,n be a fixed smooth, compact,
oriented surface of genus g with n holes such that the boundary com-
ponents are smooth closed curves. A marked Riemann surface of type
(or signature) (g, n) is a pair (S, ϕ) such that S is a compact Riemann
surface (assumed to be endowed with a metric of Gauss curvature −1
) of type (g, n) and ϕ : Fg,n → S is a homeomorphism (called the
marking homeomorphism). We say that (S, ϕ) ∼ (S ′, ϕ′) (they are
equivalent markings) if there exists an isometry m : S → S ′ such
that ϕ′ and m ◦ ϕ are isotopic. The Teichmüller space Tg,n of type
(g, n) is defined to be

Tg,n = {[(S, ϕ)]} .
It turns out that we could have used isotopy classes of such ϕ in place
of ϕ, and also we could have restricted ourselves to diffeomorphisms
ϕ. Note that if ϕ1 and ϕ2 are isotopic, then (S, ϕ1) and (S, ϕ2) are
automatically marking equivalent, but the converse is false, because
the m in the definition could be an isometry that is not isotopic to the
identity. Also note that ϕ induces a hyperbolic structure on Fg,n.

There are many equivalent definitions. Let H be the set of all hyper-
bolic structures on Fg,n, and let Diff0 be the group of diffeomorphisms
of Fg,n that are isotopic to the identity. Then

Tg,n = H�Diff0.

Note that a hyperbolic structure is a subatlas of a (unique) conformal
structure; by the uniformization theorem, every conformal structure
contains a unique hyperbolic structure. Then

Tg,n = C�Diff0,

where C is the set of smooth conformal structures in Fg,n (smooth with
respect to the smooth structure on Fg.n).

In the particular case (g, n) = (0, 3) (i.e. sphere with 3 holes), two
maps ϕ1, ϕ2 : F0,3 → S are isotopic if and only if ϕ−11 ◦ ϕ2 fixes each
boundary component of F0,3. Such a (S, ϕ) is called a marked Y-piece
or a marked pair of pants.

We construct the various Riemann surfaces {F (G,L,A)} from Sec-
tion 2, where ω = (L,A) = (`1, ..., `3g−3, α1, ..., α3g−3) ∈ R3g−3

>0 ×
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R3g−3 =: R6g−6. These are called the Fenchel-Nielsen parameters. We
will turn this set into a model of Tg,0 by choosing suitable marking
homeomorphisms. We will regard G as fixed and will label F ω :=
F (G,L,A) for ω ∈ R6g−6.

Lemma 5. Let ϕ1, ϕ2 : F → S be two marking homeomorphisms.
Then they are homotopic iff they are isotopic.

Definition 6. The set of all marked Riemann surfaces Sω = (F ω, ϕω)
based on the graph G is denoted TG.

Theorem 7. Let G be given. Then for every marked Riemann surface
(S, ϕ), there exists a unique Sω ∈ TG that is marking equivalent to
(S, ϕ).

Definition 8. Given cubic graph G with 2g − 2 vertices, for every
S ∈ Tg, let ω (S) = ωG (S) denote the unique ω ∈ R6g−6 such that S is
marking equivalent to SωG. The components are the Fenchel-Nielsen
coordinates of S.

Theorem 9. If two cubic graphs G, G′ with 2g − 2 vertices are given
with coordinate maps ωG and ωG′, then the transition function ωG◦ωG′ :
R6g−6 → R6g−6 is a real analytic diffeomorphism.

Definition 10. The real analytic structure on Tg is given by the charts
ωG.

Every homeomorphism h : F → F of the base surface to itself defines
an action on Tg via (S, ϕ) 7→ (S, ϕ ◦ h). Two such homeomorphisms
that are isotopic define same action. Thus:

Definition 11. The mapping class group Modg is the group of all
equivalence classes of homeomorphisms F → F modulo isotopy.

Note that orientation-reversing homeomorphisms are also allowed.
Given h ∈Mg, let m [h] denote the action on Tg.

Definition 12. The set

Mg : {m [h] : h ∈ Modg}
is called the Teichmüller modular group, and its elements are called
Teichmüller mappings.

Lemma 13. For g ≥ 3, m : Modg → Mg is an isomorphism. For
g = 2, it has kernel Z2.

Lemma 14. Let j : S → S be an isometry. If j is isotopic to the
identity, then it is the identity.
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Theorem 15. Mg acts properly discontinuously on Tg by real analytic
diffeomorphisms.

Definition 16. The quotient space

Tg�Mg

is the moduli space of hyperbolic Riemann surfaces of genus g.

Definition 17. All of the above may be generalized to Riemann sur-
faces Sg,n of genus g and n boundary components β1, ..., βn. Let Tg,n
be the Teichmüller space of complete finite volume hyperbolic Riemann
surfaces marked by Sg,n. Let Modg,n be the mapping class group, and
let

Mg,n = Tg,n�Modg,n

be the moduli space of hyperbolic Riemann surfaces of genus g with n
ordered cusps.

The space Tg,n is a finite-dimensional complex manifold equipped
with the Weil-Petersson symplectic form, to be described in the next
section.

7. Symplectic geometry of moduli spaces of Riemann
surfaces

We set notation similar to what we have already done. Let S be
a fixed oriented smooth surface of negative Euler characteristic. A
point in Teichmüller space T (S) is a complete hyperbolic surface X
equipped with a diffeomorphism f : S → X. The map f provides a
marking on X by S. Two marked surfaces f : S → X and g : S → Y
define the same point in T (S) if and only if f ◦ g−1 : Y → X is iso-
topic to a conformal map. When ∂S is nonempty, consider hyperbolic
Riemann surfaces homeomorphic to S with geodesic boundary compo-
nents of fixed length. Let A be the set of components of ∂S, and let

b = (bα)α∈A ∈ R
|A|
+ . A point X ∈ T (S, b) is a marked hyperbolic sur-

face with geodesic boundary components such that for each boundary
component β ∈ A, we have that the length of f (β) is

`β (X) = bβ.

Let Sg,n be an oriented smooth connected surface of genus g with
n boundary components (β1, ..., βn). We let the Teichmüller space of
hyperbolic structures on Sg,n with geodesic boundary components of
length b1, ..., bn be

Tg,n (b1, ..., bn) = T (Sg,n, (b1, ..., bn)) .



INTRODUCTION TO THE WORK OF MIRIAM MIRZAKHANI 15

Let Mod (S) denote the mapping class group of S, i.e. the group of
isotopy classes of orientation-preserving homeomorphisms from S to S
leaving each boundary component β fixed (as a set). The mapping class
group Modg,n = Mod (Sg,n) acts on Tg,n (b) by changing the marking.
The quotient is

Mg,n (b) = M (Sg,n : `βi = bi∀i)
= Tg,n (b)�Modg,n ,

and it is called the moduli space of Riemann surfaces homeomor-
phic to Sg,n with n boundary components of length `βi = bi∀i.
We allow boundary geodesics of length 0 (i.e. cusps), and so

Tg,n = Tg,n (0) ;Mg,n =Mg,n (0) .

For a disconnected surface S with components {Si}ki=1 and bound-
aries Ai = ∂Si ⊆ ∂S, we have

M (S, b) =
k∏
i=1

M (Si, bAi
) ,

where bAi
is a vector of positive real numbers, one for each component

of Ai.
Given Sg,n, fix a set P = {αj}mj=1, where the αj are disjoint simple

closed curves which can be used to cut Sg,n into pairs of pants. Note
that m = 3g−3+n, this is the number of interior curves. For a marked
hyperbolic surface X ∈ Tg,n (b), we let

FN (X) := (` (X) , τ (X)) = (`α1 (X) , ..., `αm (X) , τα1 (X) , ..., ταm (X)) ,

with `αj
(X) and ταj

(X) being the lengths and twist parameters, re-
spectively. Then

Tg,n (b) ∼= Rm+ × Rm

by the FN map.

Theorem 18. (Wolpert, 1981 CMH) The Weil-Petersson symplectic
form is given by

ωwp =
m∑
j=1

d`αj
∧ dταj

This symplectic form of a Kähler metric that is not complete on
the moduli space was introduced by A. Weil. Wolpert showed that it
has a simple expression in terms of the Fenchel-Nielsen coordinates,
and he showed that it extends as a closed form to the compactification
Mg,n and defines a cohomology class [ω] ∈ H2

(
Mg,n,R

)
. In fact,[

ω
π2

]
∈ H2

(
Mg,n,Q

)
, and by multiplying by an integer, this class
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would define a positive line bundle overMg,n. This implies thatMg,n is
a projective algebraic variety. The Deligne-Mumford compactification
is achieved by allowing `γ = 0 for simple closed geodesics inside Sg,n.
When the length vector ` (X) = 0, there is a natural complex structure
on Tg,n, and this symplectic form is actually the Kähler form of a Kähler
metric. When b is nonzero, there is no natural complex structure on
Mg,n (b), but as mentioned before, the Fenchel-Nielsen coordinates give
it a real analytic structure.

Given a simple closed geodesic α on X ∈ Tg,n (b) and t ∈ R, we
can deform the complex structure of X by cutting along α and reglue
back after twisting t units to the right. We denote the new surface
by twt

α (X). This one-parameter family is a continuous path in Te-
ichmüller space. For the particular case t = `α (X), twt

α (X) = φα (X),
where φα ∈ Mod (Sg,n) is a right Dehn twist about α, and thus for
this t we are back to the same class in Mg,n (b).

8. Digression: symplectic reduction

A symplectic manifold (M,ω) is a smooth manifold M of dimen-
sion 2n along with a nondegenerate closed 2-form ω, called the sym-
plectic form. It is closed in that dω = 0, and it is nondegenerate in
that the symplectic volume form 1

n!
ωn = 1

n!
ω ∧ ... ∧ ω is never zero

on M . A symplectomorphism φ : M → M ′ is a diffeomorphism
between symplectic manifolds (M,ω) and (M ′, ω′) such that ω = φ∗ω′.
The Darboux Theorem states that all symplectic manifolds are locally
symplectomorphic to (R2n, dp1 ∧ dq1 + ...+ dpn ∧ dqn) (canonical co-
ordinates). This is the model of a configuration space of a particle in
n-dimensions; q = position, p = momentum.

Given a one-form α on M , we say that the vector field α# is the
symplectic dual of α if α (X) = ω

(
α#, X

)
for all vector fields X.

Further, a function H called a Hamiltonian function is associated to
a Hamiltonian vector field ξH if

dH (X) = ω (ξH , X)

for all vector fields X. The vector field ξH is also called the symplectic
gradient of H. The prototypical example of this is H = 1

2

∑
p2j +

1
2

∑
q2k (total energy of a particle of mass 1 attached to a spring with

spring constant 1). Then

dH =
∑

(pjdpj + qjdqj) = rdr

(with r the polar coordinate). Observe that if

ξH = ∂θ =
∑(

qj∂pj − pj∂qj
)
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Then

ω (ξH , ·) =
∑
j,k

(dpj ∧ dqj) (qk∂pk − pk∂qk)

=
∑
j

(qjdqj + pjdpj) = dH.

Note that in this case, ξH is the vector field generated by the rotational
symmetries around the two dimensional subspaces. By Noether’s The-
orem, every symmetry that leaves the symplectic form invariant (like
rotation around the two plane) gives rise to a first integral of motion
— ie an invariant function H. Note that in all cases the flow of the
Hamiltonian vector field preserves the Hamiltonian function and also
is a family of symplectomorphisms.

Now, suppose that a whole group G acts on (M,ω) by symplecto-
morphisms. We define the moment map

µ : M → g∗

from M to the dual of the Lie algebra g of G by the formula

dµ (Y ) (X) = ω
(
X,Y

)
for all vector fields Y and all X ∈ g. The vector field X on M is the
vector field induced by X, ie

Xp =
d

dt

∣∣∣∣
t=0

expG (tX) · p

for p ∈ M . What this means is that X represents an infinitessimal
symmetry of (M,ω), which by Noether’s theorem generates a conserved
quantity, the function p 7→ µ (p) (X), which is a Hamiltonian for X.
For example, if X comes from a rotation, µ (·) (X) is the angular mo-
mentum from that rotation. A really simple example for this is in R2,
note that

d

(
r2

2

)
= i (∂θ) (dy ∧ dx) ,

where r2 = x2 + y2 and ∂θ = xdy − ydx. And note that the angular
momentum of a unit point mass rotating from (x, y) around the circle
centered at the origin at velocity ∂θ is vr = x2 +y2. (OK, make it mass
1
2

so that the formula matches.)
For another example, letN be a smooth manifolds, and letM = T ∗N

be the cotangent bundle. Let τ be the tautological one-form on M .
(That is, π : T ∗N → N means that π∗ : T (T ∗N) → TN , so for
αx ∈ T ∗xN , ξαx ∈ Tαx (T ∗N), we define τ ∈ Ω1 (T ∗N) by ταx (ξαx) =
αx (π∗ (ξαx)) ∈ R.) Then we let ω = dτ ∈ Ω2 (T ∗N). In canonical
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coordinates τ =
∑
pidqi and dτ =

∑
dpi ∧ dqi. Suppose now that the

Lie group G acts on the base manifold N . Then there is an induced
action on T ∗N given by g · αx := (g−1)

∗
(αx) ∈ T ∗gxN . This action is

Hamiltonian with the moment map defined for X ∈ g by

µ (•) (X) = −i
(
X
)
τ.

Now, if a ∈ g∗ is a regular value of µ, we note that

µ−1 (a)

is a submanifold of codimension dimG, and G acts on µ−1 (a) (because
the Hamiltonian is preserved under the Hamiltonian flow). We define

Ma = µ−1 (a)�G
to be the symplectic quotient of M at a. Here, we have reduced the
number of variables by using the symmetry of the system. Note that
the symplectic form descends to a symplectic form on Ma – we have
reduced the dimension by two times the dimension of G, and so we
have a nondegenerate two-form that is closed on the quotient.

If 0 is a regular value of the moment map, the coisotropic embed-
ding theorem states that there is a neighborhood of the submanifold
µ−1 (0) on which the symplectic form is given in a standard form. This
is a generalization of Darboux’s theorem. In this case, when a is close
to zero, Ma is diffeomorphic to M0. If G = T n = (S1)

n
, the action of

G on the level set µ−1 (a) gives rise to n circle bundles C1, ..., Cn de-
fined over Ma. Fix a connection α of this T n bundle on µ−1 (0). The
curvature Ω of α satisfies c1 (C) = c1 (C1 ⊕ ...⊕ Cn) = [Ω].

Theorem 19. (Normal Form Theorem, see Guillemin) The space (Ma, ωa)
is symplectomorphic to (M0, ω0 + aΩ), where Ω is the curvature form
of the connection α. As cohomology classes,

[ωa] = [ω] +
n∑
j=1

aj · [φj] ,

where φj = c1 (Cj) denotes the first Chern class.

We now integrate ωma over Ma to get the following.

Corollary 20. Let 0 be a regular value of the proper moment map µ :
M → Rn of the Hamiltonian action of T n on M . Then for sufficiently
small ε > 0, a ∈ Rn+ with |a| ≤ ε, the volume of Mα = µ−1 (a)�T n is
a polynomial in a1, ..., an of degree m = dim (Ma) /2 given by∑

|β|≤m

C (β) · aβ,
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where

C (β) =
1

β! (m− |β|)!

∫
M0

φβ11 ...φ
βn
n · ωm−|β|

9. Back to symplectic geometry of the moduli space

For any closed geodesic γ on a hyperbolic surface X, there is a collar
neighborhood of width

arcsin h

(
1

sinh (`γ (X) /2)

)
that is an embedded annulus. Moreover, two simple closed geodesics
are disjoint iff their collars are disjoint. Therefore, for each boundary

component βj of X ∈ Tg,n (b), there is a curve β̃j of constant curvature
of length close to `βj (X) inside the collar neighborhood of βj. In the
case where the length of the boundary component βj is taken to zero,

β̃j tends to the horocycle of length 1
4

around the puncture. When βj
does not have length 0, there is a canonical bijection between points of

β̃j and those of βj.
The orientation of Sg,n induces an orientation on its boundary com-

ponents. Let γj : [0, bj] → βj be arclength parametrizations. For
t ∈ [0, 1], we define ξt : βj → βj by

ξt (γj (s)) = γj (s+ tbj) .

So since ξt+1 = ξt, this is a circle action.

Next, let β̃j a curve parallel to the boundary component as above.

The advantage to using β̃j instead of βj is that it has positive length

even when βj has length 0. Note for i 6= j, β̃i is disjoint from β̃j. For
fixed b = (b1, ..., bn), define

Si (Tg,n (b)) =
{

(X, p) : p ∈ β̃i, X ∈ Tg,n (b)
}
→ Tg,n (b) ,

a circle bundle. Quotienting out by the natural action of Modg,n, we
still get a circle bundle

Si (Mg,n (b))→Mg,n (b)

in the orbifold sense since the stabilizers are finite. Also, the circle
bundle can be extended to Mg,n (b) :

Si
(
Mg,n (b)

)
→Mg,n (b)

Since this is a circle bundle Si, its (first) Chern class [c1 (Si)] ∈
H2
(
Mg,n,Q

)
(note, it’s an orbifold). We need to relate this to the

tautological class ψi = c1 (Li), where the line bundle Li is the cotangent
space over the marked point xi. Recall that via the uniformization
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theorem there is a unique compact complex curve C and points p1, ..., pn
on C such thatX is conformally equivalent to C\{p1, ..., pn}. Also, each
cusp neighborhood of X is equivalent to ∆ \ {0} ⊂ C. Considering the

parallel curve β̃j around the puncture pj, each element of the tangent

space of X at pj corresponds to a point of β̃j. However, the orientation

of β̃j is the negative of the one induced by the tangent vectors at pi. On
the other hand, as Lj is a complex line bundle, the orientation on the
cotangent space is the opposite of that of the tangent space, so there is
an orientation-reversing isomorphism between the circle bundle Sj and
Lj. Thus,

[c1 (Si)] = ψi = [c1 (Li)] ∈ H2
(
Mg,n,Q

)
.

Next, let the moduli space of bordered Riemann surfaces with marked
points (without fixing the lengths of the boundary components) be de-
fined by

M̂g,n =
{

(X, p1, ..., pn) : X ∈Mg,n (b1, ..., bn) ,∀j, pj ∈ β̃j, bj > 0
}
.

Define the map ` : M̂g,n → Rn+ by

` (X, p1, ..., pn) = (`β1 (X) , ..., `βn (X)) .

There is a natural action of T n = (S1)
n

on the space M̂g,n as follows.

For each j, S1 acts by moving pj along β̃j, i.e.

ξtj (X, p1, ..., pn) =
(
X, p1, ..., ξ

t (pj) , ..., pn
)
.

It turns out that this T n action is the Hamiltonian flow of the func-
tion “`2/2” with respect to the symplectic form on M̂g,n induced by
the Weil-Petersson form.

Theorem 21. The orbifold M̂g,n has a natural T n-invariant symplectic
structure such that

(1) the map

`2/2 =
(
`β1 (X)2 /2, ..., `βn (X)2 /2

)
is the moment map for the action of T n on M̂g,n, and

(2) the canonical map

s : `−1 (b1, ..., bn)�T n →Mg,n (b1, ..., bn)

is a symplectomorphism.

We remark that this extension of the symplectic form toMg,n (0, ..., 0)
is the Weil-Pederson symplectic form.
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Theorem 22. The coefficients of the volume polynomial

VOL (Mg,n (b1, ..., bn)) =
∑

|α|≤3g−3+n

Cg (α) b2α

are given by

Cg (α1, ..., αn) =
2m(g,n)|α|

2|α| |α|! (3g − 3 + n− |α|)!

∫
Mg,n

ψα1
1 ...ψαn

n ·ω3g−3+n−|α|,

where ψj = c1 (Lj), ω is the Weil-Petersson symplectic form, m (g, n) =
δ (g − 1) δ (n− 1).

Remark 23. The coefficient Cg (α) is positive and lies in π6g−6+2n−2|α|Q.

Remark 24. By a result of Wolpert, κ1 = [ω]
2π

is the first Mumford

tautological class on Mg,n .

10. Recursive formula for Weil-Pedersson volumes

To get a recursive formula for the Weil-Pedersson volume, we need
the Generalized McShane Identity, as follows.

Theorem 25. (Generalized McShane identity for bordered surfaces)
For any X ∈ Tg,n (b1, ..., bn) with 3g − 3 + n > 0, we have∑

(α1,α2)

D (b1, `α1 (X) , `α2 (X)) +
n∑
i=2

∑
γ

R (b1, bi, `γ (X)) = b1 ,

where the first sum is over all unordered pairs of simple closed geodesics
(α1, α2) bounding a pair of pants with boundary component β1, and the
second sum is over simple closed geodesics γ bounding a pair of pants
with β1 and βi. The two functions are D,R : R3 → R+ with

D (x, y, z) = 2 log

(
exp

(
x
2

)
+ exp

(
y+x
2

)
exp

(
−x

2

)
+ exp

(
y+x
2

)) ,

R (x, y, z) = x− log

(
cosh

(
y
2

)
+ cosh

(
x+z
2

)
cosh

(
y
2

)
+ cosh

(
x−z
2

)) .
Remark 26. In a pair of pants with boundary components β1, β2, β3
of lengths x1, x2, x3, there are three interesting geodesics that intersect
β1 at right angles, at the six intersection points y1, w1, z1, z2, w2, y2 (in
order). There is a unique geodesic from y1 to y2 that spins around the
pant leg with component β3, and there is a unique geodesic that spins
around the pant leg with component β2 that goes from z1 to z2, and
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finally there is a unique geodesic that goes down the “crotch” of the
pair of pants from w1 to w2. Then

R (x1, x2, x3) = d (y1, y2)

x1 −R (x1, x2, x3) = projection of β3 to β1 in univ. cover

D (x1, x2, x3) = d (y1, z1) + d (y2, z2)

= 2d (proj β2 to β1, proj β3 to β1) .

From this we see that D is symmetric wrt x2 ↔ x3, and

R (x1, x2, x3) +R (x1, x3, x2) = x1 +D (x1, x2, x3) .

All of the formulas in the theorem above can be derived using hyperbolic
trigonometry.

Note that if

H (x, y) =
1

1 + exp
(
x+y
2

) +
1

1 + exp
(
x−y
2

) ,
Then

∂

∂x
D (x, y, z) = H (y + z, x) ,

∂

∂x
R (x, y, z) =

H (z, x+ y) +H (z, x− y)

2
.

The first step is to calculate V1,1 (b). By the McShane Identity, for
any X ∈ T (S1,1, b), we have∑

γ

D (b, `γ (X) , `γ (X)) = b,

where the sum is over all nonperipheral simple closed curves on S1,1.
It is then possible to integrate this over M1,1 (b). To do this, observe
that there is a single simple closed geodesic curve of length x > 0
on any such surface S1,1 that when cut produces a hyperbolic pair of
pants. The parameters of the moduli space are the length x and also
the twisting (gluing) parameter t, and the symplectic (volume) form is
dt ∧ dx. Note that 0 ≤ t ≤ x in the moduli space, and so we integrate
the equation to get∫ ∞

0

∫ x

0

D (b, x, x) dt ∧ dx = b · V1,1 (b) , or∫ ∞
0

xD (b, x, x) dx = b · V1,1 (b)
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From the explicit equations above,

∂

∂b
D (b, x, x) =

1

1 + exp
(
x− b

2

) +
1

1 + exp
(
x+ b

2

) .
So we have

∂

∂b
(b · V1,1 (b)) =

∫ ∞
0

x

(
1

1 + exp
(
x− b

2

) +
1

1 + exp
(
x+ b

2

)) dx.

We set y1 = x+ b
2
, y2 = x− b

2
, we get∫ ∞

0

x

(
1

1 + exp
(
x− b

2

) +
1

1 + exp
(
x+ b

2

)) dx

=

∫ ∞
b/2

y1 − b
2

1 + exp (y1)
dy1 +

∫
−b/2

y2 + b
2

1 + exp (y2)
dy2 = ...

=
π2

6
+
b2

8
.

using the fact that 1
1+ey

+ 1
1+e−y = 1. As a result, since the above is

∂
∂b

(b · V1,1 (b)), we get

V1,1 (b) =
b2

24
+
π2

6
.

Also, the absolutely most trivial case is when g = 0 and n = 3. This
is a single pair of pants yielding exactly one point in the moduli space,
and by definition

V0,3 (b1, b2, b3) = 1.

Next, let L = {L1, ..., Ln} be a set of positive numbers, and let

Vg,n (L) = Vg,n (L1, ..., Ln) .

We now state the recursive formula of Mirzakhani.

Theorem 27. The following recursive formula for Vg,n (L) holds, and
using this recursion, all of these polynomials can be computed.

• For any L1, L2, L3 ≥ 0, set

V0,3 (L1, L2, L3) = 1

V1,1 (L1) =
L2
1

24
+
π2

6
.

• For L = (L1, ..., Ln), let L̂ = (L2, ..., Ln). For (g, n) 6= (1, 1) , (0, 3),
the volume satisfies

∂

∂L1

(L1Vg,n (L)) = Acong,n
(
L1, L̂

)
+Adcong,n

(
L1, L̂

)
+ Bg,n

(
L1, L̂

)
,
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where
– Acong,n

(
L1, L̂

)
= 1

2

(∫∞
0

∫∞
0
xyÂcong,n

(
x, y, L1, L̂

)
dx dy

)
– Adcong,n

(
L1, L̂

)
= 1

2

(∫∞
0

∫∞
0
xyÂdcong,n

(
x, y, L1, L̂

)
dx dy

)
– Bg,n

(
L1, L̂

)
=
∫∞
0
xB̂g,n

(
x, L1, L̂

)
dx

where
– Âcong,n

(
x, y, L1, L̂

)
= 1

2m(g−1,n+1)Vg−1,n+1

(
x, y, L̂

)
H (x+ y, L1)

– Âdcong,n

(
x, y, L1, L̂

)
=
∑

(g1,I1,g2,I2)

Vg1,n1+1(x,LI1)
2m(g1,n1+1)

Vg2,n2+1(x,LI2)
2m(g2,n2+1) ,

where the sum is over all I1, I2 ⊂ {2, ..., n} and 0 ≤ g1, g2 ≤
g such that
∗ I1 t I2 is a partition of {2, ..., n}
∗ 2 ≤ 2gj + |Ij| , g1 + g2 = g

– B̂g,n
(
x, L1, L̂

)
= 1

2m(g,n−1)

∑n
j=2

1
2

(H (x, L1 + Lj) +H (x, L1 − Lj))Vg,n−1
(
x, L2, ..., L̂j, ..., Ln

)

The idea of proof of this theorem is the following. We cut out a pair
of pants, one of whose boundary components is β1, from our surface
Sg,n (L), and after removing this, there are three possibilities. The first
possibility is that we other two pants legs are interior circles in the
surface, and removing the pair of pants results in no additional new
components of the Riemann surface, so the genus is reduced by one,
and the number of boundary components goes up by one. The next
possibility is that the other two pants legs are interior circles in the
surface, and removing the pair of pants results in two separated Rie-
mann surfaces with boundary, where we have divided up the boundary
components (including the two new ones) and the genera among the
two pieces. The third possibility is that β1 is one pant leg boundary,
βj is another pant leg boundary, and the last pant leg boundary is
an interior circle. In this case, the number of boundary components
goes down by 1, and the genus stays the same. These three possibili-

ties correspond exactly to the three terms Acong,n
(
L1, L̂

)
, Adcong,n

(
L1, L̂

)
,

Bg,n
(
L1, L̂

)
in the recursive formula.

Using this formula, one may calculate Vg,n (L). Previously, only for-
mulas for V1,1 (L) and V0,n (L) were known. Here is a sampling of these
volume polynomials:
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g n Vg,n (L)
0 3 1
1 1 1

24
(L2 + 4π2)

0 4 1
2

(
4π2 +

∑
L2
j

)
1 2 1

192
(4π2 + L2

1 + L2
2) (12π2 + L2

1 + L2
2)

2 1 1
2211840

(4π2 + L2) (12π2 + L2) (6960π4 + 384π2L2 + 5L4)


	1. Riemann surfaces and uniformization
	2. Geometry of hyperbolic surfaces
	3.  Generalizations
	4. Algebraic Curves
	5. noncompact Riemann surface types
	6. Moduli spaces
	7. Symplectic geometry of moduli spaces of Riemann surfaces
	8. Digression: symplectic reduction
	9. Back to symplectic geometry of the moduli space
	10. Recursive formula for Weil-Pedersson volumes

