
Some brief notes on the Kodaira Vanishing Theorem

1 Divisors and Line Bundles, according to Scott Nollet

This is a huge topic, because there is a difference between looking at an abstract variety and

local equations versus the equations that define a projective variety.

Given an abstract variety X and want to imbed in complex projective space, Pn, then

only the canonical line bundle OP (1) is the important object.

Let M be a complex manifold of (complex) dimension n. A divisor is defined as follows.

One example is: let V ⊂ M be an analytic subvariety (locally determined by the zero set

of holomorphic functions on M) of codimension 1. It turns out that it is locally given by

a single holomorphic function equation. This is not obvious (near singular points), and

this fact is not true if we generalize to codimension 2. Another way to think about this

is as follows. Pick a point p ∈ M . Then near p, V = {f = 0}. Then the local ring

OM,p = {germs of holomorphic functions near p} is actually a UFD, which implies the single

equation fact. Note that M = {h : h (p) = 0} is a maximal ideal in OM,p.

Remark:

1. If g is holomorphic and g|V = 0 implies that f |g.

2. f is unique up to multiplication by functions h such that h (p) 6= 0.

For V as above except possibly singular, V ∗ \ Vs (Vs is singular locus) is the smooth

locus. If V ∗1 ⊂ V ∗ is a connected component, V1 = V ∗1 is called an irreducible analytic

subvariety. Then there are irreducible pieces

V =
m⋃
j=1

Vj .

Definition: A divisor on M is a formal sum∑
aiVi, ai ∈ Z

where each Vi is an irreducible analytic subvariety of dimension n − 1. Only finitely many

ai are nonvanishing. Note that irreducible means that the equation of definition can’t be

factored.

Example: LetM = C2, V = {x2y + xy2 = 0} is singular at the origin (0, 0). xy (x+ y) =

0. This is the union of three complex lines. V = V1 + V2 + V3, V1 =“x-axis”.

Next, consider xy (x+ ty) = 0 with (x, y, t) ∈ C3. As t → 0, you get x2y = 0. This

corresponds to V1 + 2V2.

The set of all such divisors is an abelian group Div (M). A divisor D is called effective

if all the coefficients are nonnegative.
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Example: Consider the equation z5−z3 = z3 (z + 1) (z − 1) = 0 on C. The correspond-

ing divisor is 3 · V1 + V2 + V3, where V1 = 0, V2 = −1, V3 = 1.

For V an irreducible analytic subvariety, the order of vanishing of a function on V =

{f = 0} is defined as follows. If f is holomorphic in a neighborhood U about p and g is

meromorphic, then the order OrdV,p (g) is the maximal α ∈ Z such that

g = fα · h

with h holomorphic. Thus g holomorphic implies OrdV,p (g) ≥ 0. It turns out that OrdV,p (g)

is independent of p ∈ V , and we call this OrdV (g).

Recap: With M a complex manifold of dimension n. Let Div (M) be the free abelian

group generated by irreducible analytic subvarieties. LetM (M) be the set of meromorphic

functions on M . For any f ∈M (M), let

(f) =
∑
all V

OrdV (f) · V

be the corresponding divisor (note the sum is locally finite). Locally, any divisor can be

expressed like this. However, there are obstructions to finding the corresponding global

meromorphic function to a given divisor. There is a sheaf-theoretic interpretation of a

divisor. Let O = the sheaf of holomorphic functions, let O∗ be the sheaf of nonvanishing

holomorphic functions, and letM∗ be the sheaf of meromorphic functions that do not vanish

identically. For example, O∗ (U) is the set of holomorphic functions that are invertible on

U . The claim is that

Claim: Div(M) ∼= H0 (M∗�O∗).
Proof: Let D =

∑
aiVi. Pick an open cover {Uα}, with Vi|Uα given by {gαi = 0}. Then

D =
(∏

gaiαi

)
on Uα. Let fα =

∏
gaiαi ∈ M∗ (Uα) then fα ∈ M∗ (Uα)�O∗ (Uα). On the overlaps Uα ∩ Uβ

the element is well-defined up to O∗ (Uα ∩ Uβ), and so you get a well-defined element of

H0 (M∗�O∗). The converse is even easier.

Remark: Using the exact sequence

0 → O∗ →M∗ →M∗�O∗ → 0

0 → C∗ → H0 (M∗)→ H0 (M∗�O∗) = Div (M)→ H1 (O∗)

so only when the map H0 (M∗)→ H0 (M∗�O∗) is onto is it true that every divisor D = (f)

for some f ∈M∗ (M). So the obstructions to this live in H1 (O∗).
Relationship to line bundles: Let L → M be a holomorphic line bundle. Then this

is given by an open cover {Uα} and maps

L|Uα
ϕα→ Uα × C.

The (holomorphic) transition functions are

gαβ = ϕα ◦ ϕ−1
β (·, 1) : Uα ∩ Uβ → C∗.
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These satisfy the relations

gαβgβα = 1

gαβgβγgγα = 1 (cocycle condition)

Question: when are two line bundles isomorphic over the base? L ∼= L′ if ϕ′α = fαϕa for

some fα ∈ O∗ (Uα). Thus

g′αβ =
fα
fβ
gαβ

Then compute H1 (O∗) with (Uα) and Cech complex:

→
∏
O∗ (Uα)

F→
∏
O∗ (Uα ∩ Uβ)

G→

This chain complex yields cohomology H1 (O∗) = kerG�im (F ). Then kerG = {gαβ}
so that the cocycle condition holds. im (F ) implies that the first condition holds. Thus,

Pic (M) = H1 (O∗) = H1 (M,O∗) = {Line bundles mod isomorphism}. This is called the

Picard group of M .

There is an exact sequence of sheaves, inducing the long exact sequence in cohomology:

0 → O∗ →M∗ →M∗�O∗ → 0

0 → H0 (O∗) = C∗ → H0 (M∗)→ H0 (M∗�O∗) = Div (M)
δ→ H1 (O∗)→ ...

All maps above are pretty clear except the map δ. The geometric description of δ is as

follows. Given a divisor D ∈ H0 (M∗�O∗) and an open cover {Uα}, fα ∈M∗ (Uα) (unique

mod O∗). Set gαβ = fα
fβ

on Uα ∩ Uβ. Then

gαβgβα = 1

gαβgβγgγα = 1 (cocycle condition)

This gives a line bundle. The fractions are only well-defined up to O∗. If {f ′α} also give

D, then g′αβ = f ′α
f ′β

gives a different line bundle. We see that hα = fα
f ′α
∈ O∗ (Uα). Then

g′αβ =
hβ
hα
gαβ. The existence of the elements

hβ
hα
∈ O∗ implies that {gαβ} and

{
g′αβ
}

give

isomorphic line bundles. The map from D to this line bundle is the map δ. Note that the

meromorphic functions map to trivial line bundles through β.

Remarks:

1. δ is a group homomorphism.

δ (D +D′) = δ ({fα}+ {f ′α}) = δ ({fαf ′α}) = δ (D) ⊗ δ (D′) (transition functions are

multiplied).

δ (−D) = δ (D)∗.

2. δ (D) = δ ({fα}) is trivial iff there exist hα ∈ O∗ (Uα) such that fα
fβ

= gαβ = hα
hβ

, iff
fα
hα

=
fβ
hβ

on Uα∩Uβ, iff there exists f ∈M∗ (M) such that f |Uα = fα
hα

, so that D = (f).
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3. Given D corresponding to {fα}, we get more that just δ (D) = L (D), more than

just the transition functions. We also have fα ∈ M∗ (Uα) satisfying fβgαβ = fα on

Uα ∩ Uβ. This data is exactly a global meromorphic section of L → M . (If you can

choose each fα to be holomorphic, then we have a holomorphic section.) The divisor

is effective (nonegative coefficients) iff the fα are holomorphic iff the correspondinf

section is holomorphic.

Example: on P1, the divisor p − q corresponds to the function x0

x1
in homogeneous

coordinates [x0, x1].

So Div (M) → Pic (M) gives D 7→ (L →M, s ∈ H0 (L ⊗M)). Conversely, if s is

a global meromorphic section of L, then s corresponds to {fα} such that gαβ =
fβ
fα
∈

O∗ (Uα ∩ Uβ), so they have the same poles and same zeros on the intersections. So for V

irreducible, OrdV (fα) = OrdV (fβ) = OrdV (s). Take D =
∑

irred V OrdV (s)V . Note

Div (M) is a group under addition, and Pic (M) is a group under tensor product, and these

maps are group homomorphisms.

Definition: Two divisors D and D′ are called linearly equivalent if L (D) ∼= L (D′), or

equivalently if there exists a global meromorphic function f such that D = D′ + (f).

Definition: For D ∈ Div (M), the complete linear system |D| of the divisor D is

|D| = {D + (f) : D + (f) is effective for f global meromorphic}. Note that this is the same

as the set of holomorphic sections of L (D) mod C∗. This has the structure of a projective

space, which we call PH0 (L (D)) = H0 (L (D))�C∗. More generally, a family of effective

divisors on M corresponding to a linear subspace W of H0 (L (D)) is called a linear system.

Motivating Classical Example: Suppose that j : M ↪→ PN is a smooth analytic

projective embedding. For example, with N = 2, consider a cubic curve is given by a cubic

homogeneous polynomial f , and {f = 0} is a smooth curve. This a genus 1 curve (elliptic

curve), since g = 1
2

(d− 2) (d− 1). Note that f is not a global meromorphic function, but it

is a global holomorphic section of a line bundle L = (tautological line bundle)3. Imagine a

line L ⊂ P2 that varies and intersects j (M) in various points — in fact sets of three points

(counting multiplicities). This actually defines a linear system on M . That is, each set of

three points gives an effective divisor on M , and each set is linearly equivalent to each other

set. If L and L′ are intersect at {p, q, r}, {p′, q′, r′}, respectively. Then the equations of L

and L′ are respectively
∑
aixi = 0,

∑
a′ixi = 0. So f =

∑
aixi∑
a′ixi

is a global meromorphic

function on P2. Note that f has zeros (poles) along L (L′). Restricted to M , f yields a

global meromorphic function on M , and (f |M) = p+ q + r − p′ − q′ − r′. Thus,

D′ + (f |M) = D.

Thus δ (L ∩M) = δ (L′ ∩M) is the same line bundle on M . What line bundle is it? It

is the pullback of the tautological line bundle OP2 (1) on P2: δ (L ∩M) = j∗ (OP2 (1)). All

line bundles over P2 are generated by OP2 (1)=tautological line bundle=hyperplane bundle.

For M ⊂ Pn with [x0, ..., xn]. These are all holomorphic sections of the hyperplane bundle

OPn (1). Restricting to M , si = j∗ (xi) are holomorphic sections of the line bundle j∗OPn (1).

So

〈s0, ..., sn〉 ⊆ H0 (j∗OPn (1))
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is a linear system.

2 Positivity and Chern Classes

Let M be an n-dimensional C-manifold. Let D ∈ Div (M), V ⊂ H0 (L (D)) subspace of

holomorphic sections. Then V�C∗ ∼= PV is the corresponding linear system of effective

divisors linearly equivalent to D.

On M we have the exact exponential sequence

0→ Z→O exp−→ O∗ → 0

Locally,

Z→ C e2πix−→ C∗

We get the long exact cohomology sequence with coefficients in the sheaves above:

0→ Z→ C � C∗ 0→ H1 (M,Z) ↪→ H1 (M,O)
ψ→ H1 (M,O∗) = Pic (M)→ H2 (M,Z)→

Note that H1 (M,O) is a complex vector space (no torsion), so H1 (M,Z) is also free abelian.

Thus the image of ψ is Cn�free discrete abelian group, so this is an abelian Lie group. This

image is called the Jacobian of M (true at least for curves). The image

Pic (M)→ H2 (M,Z) ,L 7→ c1 (L) ,

is called the first Chern class. So, up to a continuous holomorphic deformation, the first

Chern class determines the line bundle over M . (In fact, the first Chern class determines

the line bundle up to smooth isomorphism).

Example: M = CPn. ThenH1 (CPn,O) = H2 (CPn,O) = 0. Then the map Pic (CPn)→
H2 (CPn,Z) ∼= Z is an isomorphism, so the Chern class is the degree. The generator is the

hyperplane bundle (or universal line bundle) O (1). For example, let D on CPn be given by

{f = 0}, f homogeneous of degree d. Then D is efective, c1 (L (D)) = d.

Remarks:

1. If n = 1, Pic (M) is quite large (eg any point). In the case of curves, the Jacobian

Imψ of the curve is an abelian variety of dimension g, where g is the topological genus

of M as a surface.

2. For n > 1, Pic (M) can be trivial. Then, it can’t be imbedded into projective space.

(May need condition on M)

3. In general, if M ↪→ CPn, then the map Pic (CPn) = Z → Pic (M) may be onto.

Lefschetz: this map is usually an isomorphism in higher dimensions (eg n > 3, M

algebraic).

4. In the case n = 3: M ⊂ CP3. Eg if M is algebraic,
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(a) degree of M = 1 : M = CP2, so Pic
(
CP3

)
→ Pic (M) is isomorphism.

(b) degree of M = 2 : M is a Segre imbedding of P1 × P1 into P3.

(c) degree of M = 3 : M =blowup of CP2 at 6 points, so Pic (M) = Z7.

(d) degree of M ≥ 4: Pic (P3) is iso to Pic (M), for M sufficiently general quartic,

degree d surface. (Noether-Lefschetz Theorem)

Theorem (2008, Nollet-Brevik): If M is a sufficiently general degree d surface con-

taining C1, ..., Cn in P3, then

1. M is smooth.

2. Pic (M) is freely generated by O (1) and C1, ..., Cn.

Positivity:

Back to protypical example: Let M
j
↪→ CPn, with j an embedding. In projective space,

we have coordinates [x0, x1, ..., xn]. This data gives a linear system on M via j∗OPn (1), and

any linear function in xj gives a holomorphic section
∑
aixi = 0, an effective divisor. You

get a line bundle by pullback: if si = j∗xi, then
∑
aisi is holomorphic section of j∗OPn (1);

thus,
∑
aisi is a linear system(bunch of sections of line bundle linearly equivalent to each

other).

Definitions: A divisor D on M is very ample if the associated line bundle L (D) =

j∗OPn (1) for some embedding M
j
↪→ CPn. We say D is ample if mD is very ample for some

m > 0. These are different notions of positivity.

Example: If D is a point p on a Riemann surface M , then D is ample but not very

ample (unless M = P1; then a single point is very ample).

If {Dt : t ∈ V } is a linear system ( V is a subset of holomorphic sections of L (D) ). The

base locus of a linear system is the intersection of all the Dt. Here is an example: if all the

lines through a certain point are the linear system, the base locus is that point.

Observe that if this linear system comes from an embedding, then the base locus is

empty.

Bertini’s Theorem: The generic element of a linear system is smooth away from the

base locus. “Generic” means off a codimension 1 set.

Cor: If D is very ample, then the general element of the linear system |D| is a smooth

submanifold of M .

Definition: KM = ∧nTM is called the canonical bundle on M . It is holomorphic.

Kodaira Vanishing Theorem: If A is an ample divisor on a manifold M , then

H i (M,L (−A)) = 0

for i < dimCM . This is equivalent to

H i (M,L (KM + A)) = 0

for i > 0, by Serre duality. Note L (KM + A) = L (KM)⊗ L (A).

Serre duality: H i (M,L) is dual to Hn−i (M,L∗ ⊗KM). (nondegenerate pairing)
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3 Igor begins

Positive line bundles:

Let M be a complex manifold. Then TMC = T 0,1 ⊕ T 1,0.

Complex coordinates are z1, ..., zn; z1 = x1 + iy1. T
0,1 =span

{
∂
∂zi

}
.

A complex manifold is (M,J), where J is an almost complex structure. J ∈ End (TM),

J2 = −1. J is multiplication by i.

The spaces T 0,1 and T 1,0 are the ±i eigenspaces of J , both of the same dimension. We

are given a Hermitian metric g on M such that g (JX, JY ) = g (X, Y ). We can choose a

basis of TxM by first picking one vector e1, then Je1, then span {e1, Je1} is an invariant

subspace for J , and then we go to the orthogonal complement, etc. etc.

Definition: A real (1, 1)-form ϕ on a complex manifold (M, g, J) is a two form in

Γ
(
(T 0,1)

∗ ⊗ (T 1,0)
∗)

. A positive (1, 1)-form is called positive if the symmetric tensor ϕ (· , J ·)
is a positive definite symmetric bilinear form.

4 Hodge Theory

Consider the following complex (V,D) of vector spaces and linear operators.

0→ V0
D0→ V1

D1→ V2
D2→ ...

Dn−1→ Vn → 0

We assume

Dp ◦Dp−1 = 0.

Let

V =
⊕

Vi, D =
⊕

Di

We can define cohomology

Hp (V,D) = kerDp�ImDp−1

Our goal is to identify Hp (V,D) with a specific subspace of kerDp by choosing a specific

representative inside kerDp, which is the harmonic element in each cohomology class.

In order to do this, each Vp must be equipped with an inner product 〈 • , • 〉p.
Remark: In applications, Vp’s are infinite dimensional, and Dp’s are unbounded opera-

tors, so there are some analytic difficulties. Thus we need an additional condition.

We say that the complex (V,D) is elliptic: this condition is algebraic. This condition

will take care of analytic difficulties.

Example 1: Let M be a compact manifold with empty boundary. Let Vp = Ωp (M) =

Γ (∧pT ∗M) be the vector space of smooth real-valued p-forms on M . Then Dp = d is the

standard exterior derivative. Then

Hp (Ω, d) = Hde Rham (M) .

If M is Riemannian, then ∧p (M) has an inner product ( • , • )p, and the inner product

〈ω1, ω2〉p =

∫
M

(ω1, ω2)p dV.
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Example 2: Let M be a Kähler manifold,

Vp = Γ (∧q,pM) ,

Dp = ∂p,

where ∂p is the Dolbeault differential. The corresponding cohomology is Dolbeault cohomol-

ogy:

Hq,p (M) = ker ∂p�Im∂p−1.

The Laplacian (Laplace Operator): The inner products 〈 • , • 〉p allow us to define

adjoint operators

D∗p : Vp+1 → Vp,

defined by 〈
D∗pu, v

〉
p

= 〈u,Dpv〉p+1

for all u ∈ Vp+1 and v ∈ Vp. The Laplacian ∆p is defined as

∆p = D∗pDp +DpD
∗
p−1.

In Example 1, ∆ = dd∗ + d∗d. In Example 2, ∆ = ∂∂
∗

+ ∂
∗
∂. Note the geometry comes in

by defining the adjoints.

On the circle, ∆0 = − d2

dθ2
, eigenvalues are n2 corresponding to eigenfunctions einθ.

Properties of the Laplace operator: Spectrum “=” eigenvalues for this discussion.

1. ∆p is positive semi-definite, meaning that 〈∆pu, u〉 ≥ 0. Proof:

〈(D∗D +DD∗)u, u〉 = 〈Du,Du〉+ 〈D∗u,D∗u〉 .

This implies its spectrum is nonnegative.

2. ∆p is self-adjoint (∆∗p = ∆p).

3. The spectrum of ∆p consists of nonnegative eigenvalues

0 ≤ λ1 < λ2 < ...→∞

with multiplicities. Each eigenspace is finite dimensional. Eigenspaces corresponding

to distinct eigenvalues are orthogonal.

4. There is an orthonormal basis of Vp consisting of eigenvectors of ∆p.

In this basis, ∆p = diag (λ1, λ2, ...). From this discussion, it is clear that

∆p : (ker ∆p)
⊥ → Im (∆p)

is an isomorphism.

This implies that

Vp = ker ∆p ⊕ Im∆p
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as an orthogonal direct sum. But what is Im∆p? We have

∆pu = D∗p (Dpu) +Dp−1

(
D∗p−1u

)
= v + w

is the orthogonal direct sum of Im
(
D∗p
)

and Im (Dp−1).

Thus, we have

Theorem. (Hodge decomposition) We have the following orthogonal decomposition:

Vp = ker ∆p ⊕ ImD∗p ⊕ ImDp−1

Recall that

Hp (V,D) = kerDp�ImDp−1

We claim that (
ImD∗p

)⊥
= kerDp.

The conclusion is:

Theorem (Hodge Theorem):

ker ∆p
∼= Hp (V,D) .

There is a recipe: Given any [u] ∈ Hp (V,D). Pick any representative u, and map it to

its orthogonal projection to ker ∆p.

Proof of claim:

u ∈ kerDp ⇐⇒ Dpu = 0

⇐⇒ 〈Dpu, v〉 = 0 for all v

⇐⇒
〈
u,D∗pv

〉
= 0 for all v

⇐⇒ u ∈
(
ImD∗p

)⊥
.

5 Shocking revelations about Kähler manifolds and you

A Kähler manifold is a complex Hermitian manifold which is also endowed with a compati-

ble symplectic structure. These manifolds generalize nonsingular complex algebraic varieties.

We will see that any complex submanifold of CP n is Kähler. By Chow’s Theorem, it is also

algebraic. In differential geometry, there are two approaches: one without coordinates, one

with coordinates. We will use both.

5.1 Complex manifolds

A complex manifold M of complex dimension n is a manifold where every point p ∈ M

has a neighborhood with complex coordinates z1, ..., zn, zj = xj + iyj. All the transition
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functions between the two coordinate systems must be holomorphic. That is, a function f

is holomorphic if ∂jf = 0 for all j, where

∂j =
1

2

(
∂

∂xj
+ i

∂

∂yj

)
,

∂j =
1

2

(
∂

∂xj
− i ∂

∂yj

)
.

Let the complex manifold M be considered as a real 2n-dimensional manifold. Then

TM ⊗ C is a rank 2n complex vector bundle over M . Then a local basis of TM ⊗ C :

∂1, ..., ∂n, ∂1, ..., ∂n

Thus, we have a decomposition

TM ⊗ C = T 1,0M ⊕ T 0,1M

Then T 1,0M is the holomorphic tangent bundle (isomorphic as a complex bundle to TM),

and T 0,1M is the anti-holomorphic tangent bundle. Similarly,

T ∗M ⊗ C = ∧1,0M ⊕ ∧0,1M

= span
{
dz1, ..., dzn

}
⊕ span

{
dz1, ..., dzn

}
.

Forms:

∧rCM =
⊕
p+q=r

∧p,qM,

with ∧p,qM spanned locally by

dzi1 ∧ ... ∧ dzip ∧ dzj1 ∧ ... ∧ dzjq .

A (p, q) form ω ∈ Ωp,q (M) is a smooth section of ∧p,qM . Similarly,

Ωr (M,C) =
⊕
p+q=r

Ωp,q (M) .

Let d : Ωr (M)→ Ωr+1 (M) be the exterior derivative that maps

d : Ωp,q → Ωp+1,q ⊕ Ωp,q+1.

we decompose

d = ∂ + ∂

according to the appropriate images above. Any ω ∈ Ωp,q (M) can be written

ω =
∑

|I|=p,|J |=q

ωI,Jdz
I ∧ dzJ ,
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and

∂ω =

p∑
k=1

(
∂kωI,J

)
dzk ∧ dzI ∧ dzJ .

On a complex manifold, we have

d2 = ∂
2

= ∂2 = ∂∂ + ∂∂ = 0.

The Dolbeault complex is (for all p)

0→ Ωp,0 ∂0→ Ωp,1 ∂1→ ...
∂2n−p−1→ Ωp,2n−p ∂2n−p→ 0.

The corresponding cohomology is Dolbeault cohomology:

Hp,q (M) = ker ∂q�Im∂q−1.

If E → M is a holomorphic rank k complex vector bundle, we can consider E-valued

(p, q) forms

Ωp,q (M,E) = Ωp,q (M)⊗ Γ (E) .

Then ∂ can be extended to Ωp,q (M,E). In local coordinates: let s1, ..., sk be a basis of local

holomorphic sections. Then the Dolbeault differential is

∂

(
k∑
r=1

ωr ⊗ sr

)
=

k∑
r=1

∂ (ωr)⊗ sr.

This is well-defined. Again, the extended ∂
2

= 0, so we can define

Hp,q (M,E) .

We want to do Hodge theory with these cohomology groups. The appropriate metric

is a Hermitian metric. A Hermitian metric over a complex vector bundle E → M is a

smoothly varying positive definite Hermitian form H (•, •) on each fiber. By definition, this

means

H ∈ Γ (End (E,E)) ∼= Γ
(
E ⊗ E

)
such that if Z and W are holomorphic sections of E and λ ∈ C, then on each fiber

H
(
Z,W

)
= H

(
W,Z

)
H
(
λZ,W

)
= λH

(
Z,W

)
H
(
Z,Z

)
> 0 for all Z 6= 0

at the point in question. If E = TM , then in local holomorphic coordinates,

H =
n∑

α,β=1

hαβdz
α ⊗ dzβ,
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so H extends to TM ⊗ C. In particular,

H (∂α, ∂β) = 0 = H
(
∂α, ∂β

)
,

hαβ = H
(
∂α, ∂β

)
,

with the matrix
(
hαβ
)

Hermitian and positive definite. Note that we can write as real and

imaginary parts

H = g − iω.

Then g is a Riemannian metric on TM, and ω is called the Kähler form. Note that

g =
1

2

(
H +H

)
=
∑ 1

2

(
hαβdz

α ⊗ dzβ + hαβdz
α ⊗ dzβ

)
=

∑ 1

2
hαβ

(
dzα ⊗ dzβ + dzβ ⊗ dzα

)
This is a Riemannian metric on the real tangent bundle. Also,

ω =
i

2

(
H −H

)
=
∑ i

2
hαβdz

α ∧ dzβ.

Remark: (relation to an almost complex structure). Each complex manifold has a

canonical complex structure J ∈ End (TM), such that J2 = −1. In holomorphic coordinates

(zα = xα + iyα). We define

J

(
∂

∂xα

)
=

∂

∂yα
, J

(
∂

∂yα

)
=

∂

∂xα
,

then by extending to complex vectors,

J

(
∂

∂zα

)
= i

∂

∂zα
, J

(
∂

∂zα

)
= −i ∂

∂zα
.

Note that

ω (u, v) = g (Ju, v)

g (u, v) = ω (u, Jv)

H (Ju, Jv) = H (u, v)

g (Ju, Jv) = g (u, v)

ω (Ju, Jv) = ω (u, v) .

Note that a Hermitian manifold has a canonical volume form:

dV =
ωn

n!

=

(
i

2

)n
det
(
hαβ
)
dz1 ∧ dz1 ∧ ... ∧ dzn ∧ dzn.
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The complex manifold M is Kähler if it has a Hermitian metric such that

dω = 0.

Then ω is called the Kähler form, and (M,ω) is a symplectic manifold.

Given a Kähler form ω (a (1, 1) real form such that dω = 0), it can be written locally

ω =
1

2
d
(
φ+ φ

)
with φ a one-form, which can be chosen so that

φ =
∑

φαdz
α.

Since d = ∂ + ∂, we have

∂φ = 0, ∂φ = ω.

Then we have a ∂-Poincare lemma that says that locally

φ = c · ∂F,

so that

ω =
i

2
∂∂F = − i

2
∂∂F

The function F is called a Kähler potential, and it is defined up to ∂G+ ∂W .

Examples of Kähler manifolds.

1. M = Cn, H =
∑

j dzj ⊗ dzj, ω =
∑
dxj ∧ dyj, g =

∑
j (dxj ⊗ dxj + dyj ⊗ dyj).

2. Let M be any complex submanifold of Cn (or any other Kähler manifold) will pull

back the Hermitian structure to produce a (canonical) Kähler structure.

3. M = CP n: the Kähler form is given in terms of the Kähler potential:

F = ln
(
1 + ‖z‖2

)
= ln

(
‖w‖2

)
,

where zj =
wj
w0

, so

ω =
i

2
∂∂ ln

(
‖w‖2

)
.

The hard part is to show that the resulting matrix
[
hαβ
]

is positive definite. For

example, if n = 1, S2 = CP 1,

ω =
i

2

(
dz ∧ dz

(1 + zz)2

)
=

dx ∧ dy
(1 + x2 + y2)2 ,

g =
dx⊗ dx+ dy ⊗ dy

(1 + x2 + y2)2

This is the metric that comes from stereographic projection. This the Euclidean metric

+O
(
|z|2
)
. These are holomorphic geodesic normal coordinates. This happens only for

Kähler manifolds.
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6 Chern class warfare (Chern-Weil-Marx-Lenin the-

ory)

Comrade Einstein summation convention:

Rj
iR

k
j means

n∑
j=1

Rj
iR

k
j

(sum over repeated indices if one is up and the other is down).

Let E be a complex vector bundle over a manifold over M . Chern-Weil theory allows one

to express the image in H• (M,R) of the Chern classes of E (Z-coefficients) using curvature

of an arbitrary connection ∇ of E.

A connection on E → M is a device for computing directional derivatives of sections

of E. Another interpretation: a connection for identifying fibers of E over different points,

ie a device for lifting paths from M to E. This directional derivative is called a covariant

derivative and is defined as follows:

Definition: A covariant derivative on E is an R-linear operator ∇ : Γ (TM)× Γ (E)→
Γ (E), say (X, σ) 7→ ∇Xσ such that for all smooth f : M → R

1. ∇fXσ = f∇Xσ (∇X is tensorial)

2. ∇X (fσ) = f∇Xσ + (Xf)σ (Leibniz rule)

Example: Connections on TM (local coordinates). Let x1, ..., xn be local coordinates

on U ⊂M , so that
{

∂
∂xj

}
form a basis of TUM . We have

∇XY = ∇Xi∂iY
j∂j

= X i∇∂iY
j∂j

= X i∂Y
j

∂xi
∂j +X iY j∇∂i∂j

= X i∂Y
j

∂xi
∂j +X iY jΓ k

ij ∂k

where the Christoffel symbols are defined by

∇∂i∂j = Γ k
ij ∂k

In local coordinates, the connection is defined by the set of Christoffel symbols.

Sometimes it is helpful to study covariant derivatives in the direction of all vectors at

once. We think of this as

∇ : Γ (TM)→ Ω1 (M)⊗ Γ (TM) = Ω1 (TM) ,

where

∇ (fY ) = df ⊗ Y + f∇Y.

14



Then

∇ ∂

∂xk
= ω l

k ⊗
∂

∂xl
, and

ω l
k

(
∂

∂xj

)
= Γ l

jk .

Then

Ω =
(
ωlk
)
∈ Ω1 (M)⊗ End (TM) .

So one may also think of the connection as determined by Ω.

Levi-Civita connection: If M is a Riemannian manifold, then TM has a unique

torsion-free connection compatible with the Riemannian metric.

1. (Torsion free) ∇XY −∇YX = [X, Y ]. (Which implies Γkij = Γkji)

2. (metric) ∂
∂xj
〈Y, Z〉 =

〈
∇ ∂

∂xj
Y, Z

〉
+
〈
Y,∇ ∂

∂xj
Z
〉

for any j. (In general X 〈Y, Z〉 =

〈∇XY, Z〉+ 〈Y,∇XZ〉. (This implies that the tensor corresponding to the Riemannian

metric is “constant” in our connection.)

We get

Γijk =
1

2
gim (∂jgmk + ∂kgjm − ∂mgjk) ,

where (gij) = (〈∂i, ∂j〉) is the matrix of the metric and (gij) is the matrix for the inverse of

(gij).

Let E → M be an arbitrary bundle on E. A connection on E is an R or C-linear

differential operator ∇ : Γ (E)→ Ω1 (E) satisfying the Leibnitz rule

∇ (fσ) = df ⊗ σ + f∇σ.

On Ωp (E), the connection may be extended by

∇ (ω ⊗ σ) = dω ∧ σ + (−1)p ω ∧∇σ.

In a local basis of sections (si), ∇ is determined by

∇si = ωji sj.

The connection matrix of locally-defined one-forms is

Ω =
(
ωji
)
.

If E = TM ,

ωji

(
∂

∂xk

)
= Γjik

The curvature operator of ∇ is the End (E)-valued 2-form R∇ defined by

R∇ (σ) := ∇ (∇σ)

15



We need to check that the result is actually an endomorphism! We check that R∇ (fσ) =

fR∇ (σ). We compute

R∇ (fσ) = ∇ (∇ (fσ))

= ∇ (df ⊗ σ + f∇σ)

= −df ∧∇σ + df ∧∇σ + f∇ (∇ (σ))

= fR∇ (σ) .

Also,

R∇ = dΩ + Ω ∧ Ω.

Let

ω := Tr
(
R∇
)

=
∑
i

(
dωii +

∑
j

(
ωij ∧ ω

j
i

))
.

This does not change when coordinates are changed. Then note that

ω = d
(∑

ωii

)
,

so ω is closed (but not necessarily exact) 2-form. Thus, [ω] defines a class in H2 (M,C). It

turns out that the class does not depend on the connection. Let ∇̃ be another connection.

Then let A = ∇̃ − ∇. Then A (fs) = f (As). So A is an End (E)-valued 1-form. Then

a = tr (A) is a well-defined 1-form. Then

Tr
(
R∇̃ −R∇

)
= da,

which shows that

ω̃ = ω + da,

so that [ω̃] = [ω].

Next, we claim that [ω] is represented by a purely imaginary form. To see this, choose a

Hermitian structure 〈 • , • 〉 on E, and choose ∇ to be compatible with E. This is always

possible, and it means

∂j 〈s1, s2〉 =
〈
∇∂js1, s2

〉
+
〈
s1,∇∂js2

〉
.

Let {si} be an orthonormal basis. Then

ωjj + ωjj = 0 (no sum)

Thus, each ωjj is purely imaginary. Thus Tr
(∑

j d
(
ωjj
))

is purely imaginary.

Theorem. c1 (E) =
[
i

2π
ω
]
∈ H2 (M,R).

Definition. A Chern class c1 (E) ∈ H2 (M,Z) must satisfy the following axioms:

1. (Naturality) For every smooth f : M → N ,

f ∗ (c1 (E)) = c1 (f ∗E)
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2. (Whitney Sum)

c1 (E ⊕ F ) = c1 (E) + c1 (F )

3. (Normalization) If L → CP 1 is a tautological line bundle, then c1 (L) = −1. (ie∫
CP 1 ω = −1.)

Proof: (1) and (2) are automatic. There is a special connection called the Chern

connection. Let E → M be a complex vector bundle over a complex manifold M . Then

Λ1 (E) = Λ1,0 (E)⊕Λ0,1 (E) (first is span dzj, second is span of dzj). So we may decompose

∇ = ∇1,0 ⊕∇0,1,

∇1,0 = Π1,0∇,∇0,1 = Π0,1∇.

Theorem: If E is a holomorphic vector bundle with a Hermitian structure H (s1, s2) =

〈s1, s2〉. Then there is a unique connection on E satisfying

1. ∇ is compatible with H.

2. ∇0,1 = ∂.

This connection is given by

∇ = ∂ +H−1 ◦ ∂ ◦H,

where H : E → E∗ is the metric isomorphism. This is called the Chern connection.

Theorem: M is Kähler iff the Chern connection of TM⊗C is the same as the Levi-Civita

connection extended by complex linearity.

Last step in proof: The Chern class of CP 1: let L
π→ CP 1 be the tautological line

bundle, whose fiber is

L[z] = L[z0,z1]

is the complex line 〈z0, z1〉 in C2. Let (U0, φ0) and (U1, φ1) be canonical charts. The canonical

trivialization

ψα : π−1 (Uα)→ Uα × C

is given by

ψα ([z] , w) = ([z] , wα) .

The Hermitian structure H on L comes from C2. Let σ be a local holomorphic section, and

let u = H (σ, σ) = ‖σ‖2. Then for every X ∈ TCP 1. The derivative

du (X) = ∂Xu = ∂X (H (σ, σ))

= H (∇Xσ, σ) +H
(
σ,∇Xσ

)
= ω (X)u+ ω (X)u.

Note

ω + ω = d (log (u)) .
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On the other hand, since σ is holomorphic, and ∇0,1 = ∂, ω is a (1, 0)-form. Then

d = ∂ + ∂,

so

∂ (log (u)) = ω, ∂ (log (u)) = ω

Then

R∇ = dω = d (∂ log u) =
(
∂ + ∂

)
∂ log u

= ∂∂ log u.

Then, letting s = 1 on U0

i

2π

∫
CP 1

∂∂ log u =
i

2π

∫
CP 1

i

2
∆ log

(
1 + x2 + y2

)
= −1.

7 Kodaira Vanishing Theorem

The Kodaira Vanishing Theorem has many variants. This is used in embeddings of complex

manifolds into projective space, etc.

Theorem (Kodaira) Let Mm be a complex compact manifold, and let L be a holomorphic

line bundle that is positive, i.e. it admits a Hermitian structure with positive curvature.

Then, letting KM = ΛmT (1,0)M be the canonical bundle the cohomology groups, we have

Hq (M,KM ⊗ L) = 0, q > 0.

Remark: Note that L positive implies M is Kähler (but not conversely).

Recall that a line bundle L is ample iff some tensor power of L is very ample. A line

bundle L′ is very ample iff L′ has enough global sections to embed M into projective space.

Corollary: If L is positive iff L is ample.

Review of ingredients in the proof:

• Dolbeault cohomology: If M is a complex manifold, let Ωk (M) be the space(sheaf)

of complex-valued smooth p-forms. In holomorphic coordinates, and form ω ∈ Ωk (M)

can be written as

ω =
∑

|I|+|J |=k

ωI,JdzI ∧ dzJ .

If |I| = p, |J | = q, ω ∈ Ωp,q (M). So Ωp,q (M) is a globally defined subsheaf in the

sheaf Ωk. Then

d = ∂ + ∂, ∂ : Ωp,q → Ωp+1,q,

d2 = ∂2 = ∂
2

= 0.
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If E → M is a holomorphic vector bundle, then since ∂ annihilates holomorphic

functions, it extends to

∂ : Ωp,q (M)⊗ E → Ωp,q+1 (M)⊗ E,
∂

2
= 0.

For all p, one has the Dolbeault complex

0→ Ωp,0 ⊗ E → Ωp,1 ⊗ E → Ωp,2 ⊗ E → ...→ Ωp,m ⊗ E → 0

and then Dolbeault cohomology Hp,q (M,E).

Theorem (Dolbeault isomorphism theorem)

Hp,q (M,E) = Hq (M,Ωp ⊗ E) ,

where Ωp ⊂ Ωp,0 is the sheaf of holomorphic sections.

• Curvature: Recall a connection ∇ on a vector bundle E is a C-linear map ∇ : E →
Ω1 (M)⊗E that satisfies the Leibniz rule ∇ (fσ) = df ⊗ σ + f∇σ. Recall that ∇ can

be extended in a unique natural way to an operator

∇ : Ωp (M)⊗ E → Ωp+1 (M)⊗ E

There is a natural decomposition ∇ = ∇1,0 +∇0,1, where for example

∇1,0 : E → Ω1,0 (M)⊗ E.

Note that ∂ and ∇0,1 have similar properties - map between the same spaces, both

C-linear, both obey Leibniz rule.

Proposition: Choose a Hermitian metric h, where h (σ, µ) = 〈σ, µ〉 on E. Then there

exists a unique connection ∇ called a Chern connection with the following properties:

1. X 〈σ, µ〉 = 〈∇Xσ, µ〉+ 〈σ,∇Xµ〉 (metric compatibility)

2. ∇0,1 = ∂.

Any connection has a two-form associated to it called curvature. The curvature R∇ of

∇ is an End (E)-valued two-form defined as R∇ = ∇ ◦∇.

If L is a holomorphic line bundle. Its first Chern class is

c1 (L) =

[
i

2π
R∇
]
∈ H2 (M,R) ,

where i
2π
R∇ is a well-defined real (1, 1)-form whose class is independent of the metric.

We say L is positive if i
2π
R∇ is positive, i.e.

i

2π
R∇
(
Z,Z

)
> 0

for any nonzero section Z of T 1,0M .
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• Hodge theory: Let M be a compact complex Hermitian manifold. Then one has an

L2-inner product on Ωp ⊗ E. That is,

(σ1, σ2) =

∫
M

〈σ1, σ2〉 dV

Since ∇ = ∇1,0 +∇0,1, we abuse notation by saying ∂ = ∇1,0, ∂ = ∇0,1. We can form

two Laplacians.

∆∂ = ∂
∗
∂ + ∂∂

∗
: Ωp,q ⊗ E → Ωp,q ⊗ E

and ∆∂ similarly. Let

Hp,q (M,E) = ker ∆∂.

Theorem: Hp,q (M,E) ∼= Hp,q (M,E).

Remark: If M is an arbitrary complex manifold and E is trivial, we have d = ∂ + ∂,

but there is no relation between the standard ∆ and ∆∂. In particular, Hk (M) 6=⊕
p+q=kH

p,q (M). However, if M is Kähler, then ∆ = 2∆∂ = 2∆∂. And then the

previous relation is true. Recall that a closed, real-valued (1, 1)-form ω is called a

Kähler form. A Hermitian metric h is called Kähler if the two-form ω = i
2

(
h− h

)
is

a Kähler form. A complex manifold is called Kähler if it admits a Kähler metric.
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