
GROUPS OF HOMOTOPY SPHERES, SURGERY, AND THE KERVAIRE
INVARIANT

Milnor was one of the pioneers of the classification of manifolds field. It turns out that
higher dimensional manifolds can’t be classified. (For example: a 4-manifold can be con-
structed that has any finitely generated group as the fundamental group. Since those groups
can’t be classified, 4-manifolds can’t be classified.) So the next attempt is to classify all
manifolds of a given homotopy type (eg Poincare conjecture).

Theorem 1. (Poincaré Conjecture) If Mn is a closed manifold homotopy equivalent to Sn,
then M is homeomorphic to Sn.

This is known for all n. ( n = 0, 1 trivial). For n = 2, it is the classification of surfaces.
For n = 3, due to Perelman, n = 4 Mike Freedman, n ≥ 5 Stephen Smale (smooth case),
Newman, Connell (topological case).

Conjecture 2. (Smooth Poincaré Conjecture) If M is a closed smooth manifold h.e. to Sn,
is M diffeomorphic to Sn?

Cases: n = 0, n = 1 trivial. For n ≤ 3, an n-manifold has a unique diff. structure.
n = 4 – noone has a clue. (eg R4 has an uncountable number of diff’ble structures, only

one in every other Rn )
n = 5 s.p.c. true.
n = 6 s.p.c. true.
n = 7 false - in fact, there exist M7 homeo but not diffeo to S7 (28 different classes)
n ≥ 8 known to some extent through surgery and stable homotopy groups of sphere.
Double-suspension Theorem: Given a (PL) homology sphere Ω, Σ (ΣΩ) is homeomor-

phic to a sphere.
Question: How many smooth homotopy spheres are there in each n?

Theorem 3. (The h-cobordism Theorem) n ≥ 5. Suppose that Y n+1 is a smooth, simply-
connected compact manifold and ∂Y = Y1 t (−Y2) and the inclusions Y1 ↪→ Y and Y2 ↪→ Y
are homotopy equivalences. Then Y is diffeomorphic to Y1 × I and Y2 × I. In particular,
Y1
∼= Y2.

A consequence: simply connected smooth manifolds are diffeomorphic if and only if they
are h-cobordant.

Let Θn be the set of smooth n-dimensional homotopy spheres up to h-cobordism.

Theorem 4. The set Θn is a group (under connected sum).

Note that the identity is the standard Sn. The manifold with reversed orientation is the
inverse (?).

Why is this the right thing to do? boundary of E × I is (−E) t E then cut out a ball,
and you have an h-cobordism to the sphere.

We have a map from Θn → Πn . This is the stable n-stem = lim
k→∞

πn+k

(
Sk
)

= lim
k→∞

[
Sn+k, Sk

]
.

(use suspensions).
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To see where this goes,

0→ bPn+1 → Θn p→ Πn

im (J)

bPn+1 is the subgroup of homotopy spheres that bound parallelizable manifolds. A manifold
is called parallelizable if TM is trivial bundle. For example, Dn+1, ∂Dn+1 = Sn ⊂ bPn+1.
An n-manifold M is stably parallelizable if TM ⊕Rk is trivial for sufficiently large k.

Theorem 5. Homotopy spheres are stably parallelizable.

It is all about looking at πn−1 (SOn). Proved by complicated homotopy theory.
Take a homotopy sphere E, and embed it in Sn+k. So the normal bundle and tangent

bundle are stably trivial. Up to homeomorphism, NE ∼= Sn×Rk. Let φ be the trivialization
of the bundle (lots of choices). The map p above is p (E, φ). Collapse NE to Sk, then get
an embedding.

Question: Compute |Θn| ; Θn is the group of smooth homotopy n-spheres, n ≥ 5, with
operation connected sum.

Thom-Pontryagin Construction:
Suppose we have a smooth map f : Sn+k → Sk. If p is the south pole and is a regular

point, f−1 (p) is a manifold. But we can actually do better. Because the point has a nice
neighborhood, the neighborhood pulls back to a trivial normal bundle. One can suspend
f 7→ Σf 7→ Σ2f ... Given f , we have a manifold with a trivial normal bundle inside a sphere.
If we change f via smooth homotopy, then you can make the homotopy regular at the south
pole, then we have a framed bordism (trivialization of normal bundle) between f−1 (p) to
g−1 (p). If we suspend the whole picture, we get an assignment from {stable homotopy classes
of f : Sn+k → Sk} → {framed bordism classes of framed manifolds}. A manifold is frameable
if it has a trivial normal bundle for some embedding into some Rm. (Note stably parallelizable
implies frameable.). If M is a manifold with nonempty boundary, then frameable implies
parallelizable. This assignment mentioned above is actually an isomorphism. (bordism is a
group under disjoint sum). Thus there is an isomorphism

Πn
∼= Ωfr

n .

Given an element E ∈ Θn, let φ be a framing of its normal bundle. Then if the fiber
dimension is k, then we can map into Sk, with E going to south pole, and the framing gets

wrapped around the sphere. This is the map from Θn p→ Πn. The kernel of this and image
of this are important. Given E and φ : NE → E×Rk the framing, let p (E, φ) be the stable
homotopy class of Sn+k → Sk. Let p (E) = {p (E, φ)} be the set of all possible framings. It
turns out that this set map preserves connected sums, in that p (E1) + p (E2) ⊂ p (E1#E2).
Since p (Sn)+p (Sn) ⊂ p (Sn), we have that p (Sn) is a subgroup of Πn. Also, p (Sn)+p (E) ⊂
p (Sn#E) = p (E) implies p (E) is a union of cosets. But p (E) + p (−E) ⊂ p (Sn) implies
p (E) is a coset of p (Sn) ⊂ Πn. So p : Θn → Πn�p (Sn) is well-defined. Note that
Πn�p (Sn) ∼= Πn�Im (J). Note that J : πn (SO (r)) → [Sn+r, Sr] acts by rotations. For
α ∈ πn (SO (r)), write Sn+r = (Sn ×Dr) ∪ (Dn+1 × Sr−1), and define

J (α) (x, y) =

{
α (x) y x, y ∈ Sn ×Dr

base pt (x, y) ∈ Dn+1 × Sr−1

For r sufficiently large, you get the isomorphism above. Note that p is not always onto.
The kernel of p: Note that p (E) contains the zero element of Πn

∼= Ωfr
n . Given E and

framing of E that represents zero, ie the empty manifold, so that means that there is a framed
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manifold that has E as its boundary, iff E is the boundary of a parallelizable manifold (ie
an element of bPn+1 ). Then you get the exact sequence

0→ bPn+1 → Θn p→ Πn

im (J)

Note that bPn+1 can be computed using surgery theory, and its dimension mod 4 is important.
We will have an exact formula for bPn+1, and also the right side is computable via surgery
theory.

Consider

0 → bPn+1 → Θn p→ Πn

p (Sn)

0 → bP4m → Θ4m−1 p→ Π4m−1

p (S4m)

There are several cases depending on what n is mod4. Surgery theory was invented for
this purpose (they called it spherical modification). To try to show that p is onto, we want
a framed manifold to be framed-bordant to a homotopy sphere. How can we recognize
something to be a homotopy sphere? What is enough: π1 = 0, reduced homology=0. Notice
we get a map Mn → Sn by collapsing the outside. If M is s.c. and H∗ (M) = H∗ (S) then
the Whitehead theorem implies that this is a homotopy equivalence.

Idea : surgery theory. Motivation: CW complexes. In homotopy, we glue cells to kill
things, but then we don’t have a manifold anymore. Now, suppose that we have a manifold,
take the trivial cylinder on it, and have a nontrivial element of a homotopy group. So we
will glue on a thickened disk D2×Sn−1. We need the generated to be embedded and framed
in M , then we can do this, and everything stays a manifold. The new boundary piece is
M ′ = M − (S1 ×Dn−1) ∪ (D2 × Sn−2) on top. Then this kills off π1. Next step: to kill
H2
∼= π2 and so is represented by a sphere — keep going. This works well until you hit

trouble in the middle dimension. Might have trouble embedding S1 in a 2-manifold, for
instance. If n is odd, there is no middle dimension. Poincaré duality tells us that we kill
everything through n−1

2
, and the rest is history. We get a sequence of framed cobordisms to

a homology sphere. This tells us that we are onto (in some cases).
If n = 4m, the obstruction is the signature of M (which is a bordism invariant). For our

case, M is framed, which implies that all the characteristic classes are zero, so the signature
is zero. So we can still prove that the map is onto. The last case is the n = 4m + 2 — this
part is harder. (more later)

Can we say something about bP? Suppose that E is a homotopy sphere bounding a
parallelizable manifold. If we can kill π1 (M) and homology of M , then M−Sn is a cylinder,
so that E is diffeo to Sn. but then the same arguments say that if n + 1 is odd, we can do
this. Then bPodd = 0. Thus, Θ4m

∼= Π4m

p(S4m)
. Next, bP4m — obstruction is the signature. It
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turns out that for m > 1, bP4m is cyclic of order

|bP4m| = am22m−2
(
22m−1 − 1

)
num

(
βm

4m

)
;

am =

{
1 m even
2 m odd

βm = bernoulli number, determined by

z

ez − 1
= 1− z

2
+
β1

2!
z2 − β2

4!
z4 + ...

Now we need to look at
Π4m+2

p (S)

Φm+1→ Z2
b→ bP4m+2 → 0.

Now we need the Kervaire invariant. The obstruction to 4m−2 dimensional surgery is the Arf
invariant. Suppose that V is Z2 vector space, and we have a nondegenerate anti-symmetric

inner product. A quadratic refinement of the inner product is a function V
ξ→ Z2 such that

ξ (x+ y) − ξ (x) − ξ (y) = (x, y). (not uniquely determined!) If αi, βj is a symplectic basis
for V , the Arf invariant is

Arf (ξ) =

(dimV )/2∑
ξ (αj) ξ (βj) ∈ Z2

Also called the democratic invariant: the elements of V vote via ξ.
Given M4m+2, H2n+1 (M) has an antisymmetric cup product. Given, w ∈ H2n+1 (M),

let ξ (w) be the self-intersection number of w (assuming M is 2n-connected). Let c (M) be
Arf(ξ). It turns out that c (M) is the only obstruction to surgery on M . Then we just need
to show that c (M) is this map Φ above. There are two related arf-invariant problems going
on. This is enough to show that bP4m+2 = 0 or Z2. Why? Suppose E is not Sn and E bounds
a parallelizable manifold. Then E bounds some M with c (M) = 1. Let E ′ be any other
E ′ = ∂M ′ with c (M ′) = 1. Then the boundary connect sum E#E ′ yields c (E#E ′) = 0. So
E#E ′ is Sn. So there is at most one nonzero element of bP4m+2 .
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