
INTRO TO SUBRIEMANNIAN GEOMETRY

1. Introduction to subriemannian geometry

A lot of this talk is inspired by the paper by Ines Kath and Oliver Ungermann on the
arXiv, see [3] as well as [1].

Let M be a smooth manifold and let H ⊂ TM be a smooth distribution, where dimHx = d
for all x ∈ M . Vectors in H are called horizontal. Let Γ (H) denote the space of smooth
sections of H. We assume that H is bracket-generating. Another word for this in the
literature is nonholonomic. That means, that for each x ∈ M there is a J ∈ N such that
the sequence

Γ0 := Γ (H) , Γj+1 := Γj + [Γ0,Γj]

satisfies {Xx : X ∈ ΓJ} = TxM . Note that this is the complete opposite of a foliation, where
in that case [Γ (H) ,Γ (H)] ⊆ Γ (H). An example of the above is the Heisenberg distribution
H = span {∂y, ∂x + y∂z} ⊂ R3. Note that

[∂y, ∂x + y∂z] f = ∂y (∂x + y∂z) f − (∂x + y∂z) ∂yf

= ∂zf.

For such distributions, it is possible to get from one point on the manifold to any other
point on the manifold by a tangent (horizontal) curve (Chow-Rashevskii Theorem). If g is a
riemannian metric of H, then (g,H) is called a subriemannian structure on M and (M,H, g)
is called a subriemannian manifold. Note that for any distribution, there exists a riemannian
metric, constructed by patching together a local metric using a partition of unity. Or, using
a big hammer, you could embed the manifold smoothly into RN , and then pull back the
Euclidean metric. One can also show that given any orthonormal basis of vectors in Hx,
there exists a local orthonormal horizontal frame that restricts to the given frame at x.

An example of a kind of manifold with a subriemannian structure is a contact manifold.
By definition, a contact structure on a (2m+ 1)-dimensional manifold M is a one-form α
such that α∧ dα∧ ...∧ dα = α∧ (dα)m is a nonvanishing (2m+ 1)-form. Let Hx = kerαx =
{X ∈ TxM : α (X) = 0}. Let Z be a locally defined vector field such that α (Z) is locally
nonzero, so that Z is locally transverse to H. Then for any X, Y are any local sections of
H, then

dα (X, Y ) = Xα (Y )− Y α (X)− α ([X, Y ])

= −α ([X, Y ]) .

Suppose it were the case that there is some point x in the local neighborhood such that
[X, Y ]x is contained in Hx for all local sections X, Y of H. Let X1, ..., X2m be a local frame
of H, so that Z,X1, ..., X2m is a local frame of TM . Then

α ∧ (dα)m (Z,X1, ..., X2m) = α (Z)
∏
±dα (Xi, Xj)

= α (Z)
∏
±α ([Xi, Xj])

= 0,
1
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which is a contradiction. Thus, H = kerα is bracket-generating. The previous example of
R3 with α = dz − ydx works as a contact form, because

α ∧ dα = (dz − ydx) ∧ d (dz − ydx)

= (dz − ydx) ∧ (−dy ∧ dx)

= −dz ∧ dy ∧ dx 6= 0.

Another general example of a kind of manifold with subriemannian structure is a nil-
manifold. Recall the that a nilmanifold is a quotient of a nilpotent Lie group by a discrete
subgroup. A nilpotent Lie group is one whose Lie algebra g satisfies for some minimal integer
k > 1 :

g > [g, g]︸︷︷︸
g[1]

> [g, [g, g]]︸ ︷︷ ︸
g[2]

> ... > g[k] = 0

(We say that the Lie group is k-step nilpotent.) In this case, g[k−1] is a nontrivial subalgebra
of the center z, so that we may find a basis of left-invariant vector fields that span a space
complementary to g[k−1] in g, and by construction, this subspace is bracket-generating.

2. Metrics and Cometrics

2.1. The matrix for the musical isomorphisms. Recall the following standard con-
struction in riemannian geometry. Let 〈•, •〉 be a riemannian metric on the tangent bundle
to a manifold. This induces a metric on cotangent vectors in each T ∗xM via the formula
〈v∗, w∗〉 = 〈v, w〉, where v∗ is the dual vector defined by v∗ (X) = 〈v,X〉 (and similarly

for w∗). We let # : T ∗M → TM be the bundle map defined by (v∗)# = # (v∗) = v. If
G = (gij) = (〈∂i, ∂j〉) is the matrix for a metric on TM with respect to the coordinate vectors
∂1, ..., ∂n, then G−1 = (gij) is the matrix for the induced metric on the cotangent bundle. To
see this, observe that if (∂i)

∗ =
∑

k Bikdx
k for some smooth functions Bik, then

(∂i)
∗ (∂j) = 〈∂i, ∂j〉 = gij

=
∑
k

Bikdx
k (∂j) =

∑
k

Bikδ
k
j = Bij.

Thus, (∂i)
∗ =

∑
k gikdx

k. Then

gij = 〈∂i, ∂j〉 = 〈(∂i)∗ , (∂j)∗〉

=

〈∑
k

gjkdx
k,
∑
`

gj`dx
`

〉
=

∑
k,`

gjkgj`
〈
dxk, dx`

〉
.

As a matrix equation, this is

G = G2H,

where H is the matrix (〈dxi, dxj〉). We see that H = G−1 = (gij).
I claim the matrix for # in terms of the bases dx1, ..., dxn of T ∗M and ∂1, ..., ∂n of TM is

G−1 = (gij). To see this, suppose that

#
(
dxj
)

=
∑
k

Sjk∂k
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for some smooth functions Sjk, associated to the matrix S =
(
Sjk
)
. Observe that〈

#
(
dxj
)
, ∂`
〉

=
∑
k

Sjk 〈∂k, ∂`〉 =
∑
k

Sjkgk` = (SG)j`

=
〈
dxj, (∂`)

∗〉 =
∑
m

〈
dxj, g`mdx

m
〉

=
∑
m

g`m
〈
dxj, dxm

〉
=
∑
m

g`mg
jm = δj`

Thus, as matrices, SG = I, and so S = G−1. Therefore,

#
(
dxj
)

=
∑
k

gjk∂k.

Similarly, the flat musical isomorphism has matrix (gij):

[ (∂i) = (∂i)
∗ = gijdx

j.

2.2. Taming metrics. Note that given any subriemannian manifold (M,H, g), it is always
possible to find a riemannian metric h on TM that restricts to g on H. In this case, we say
that h tames g. But there is no canonical way of choosing h. However, there is a way to
canonically choose a degenerate metric on the cotangent bundle.

2.3. Defining the cometric from the subriemannian metric. Given a subriemannian
manifold (M,H, g), recall that g is a positive definite inner product on the subbundle H
and is not defined on nonhorizontal tangent vectors. Without further information such as a
metric on all of TM , we are not able to extend g uniquely to be defined on TM , since it is
not clear how to designate the complimentary subspace to H on which g vanishes. We define
the bundle map r : T ∗M → TM as follows: for any α ∈ T ∗xM , the linear map v 7→ α (v) for
v ∈ Hx can be represented uniquely by α (v) = g (v.Yα) for some Yα ∈ Hx. We define the
map r by

r (α) = Yα,

which can be seen to be linear in α. The image of r|T ∗
xM

is all of Hx, and r coincides with the
map # in the case where Hx is replaced by TxM . The transformation r varies smoothly with
x ∈M and is symmetric and nonnegative; let (gij) be the corresponding matrix, in analogy
with the riemannian case. Let N∗x ⊂ T ∗xM denote the kernel of r; this is the annihilator of
Hx in T ∗xM .

Note that (gij) is nonnegative definite but is not positive definite since it is not onto. Since
(gij) is not invertible, there is no analogue of the metric gij for subriemannian geometry. As
a general rule of thumb, any formula of riemannian geometry that can be expressed in terms
of raised indices alone will remain valid in subriemannian geometry. For example, the raised
Christoffel symbols are (Einstein summation used)

Γkpq =
1

2

(
gjp∂jg

kq + gjq∂jg
kp − gjk∂jgpq

)
,

and the function

Γk (ξ, β) = Γkpqξpβq,

Γ (ξ, β) = Γkpqξpβq∂k ∈ TxM
for ξ ∈ T ∗xM , β ∈ N∗x , is actually tensorial.
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3. The horizontal gradient and geodesics in subriemannian geometry

In subriemannian geometry, horizontal curves are those whose tangent vectors lie in the
distribution H. We define the length of a horizontal curve γ : [a, b]→M by

` (γ) =

∫ b

a

g (γ′, γ′)
1/2
,

and the energy of the curve is

E (γ) =

∫ b

a

g (γ′, γ′) .

As in the riemannian case, the energy is minimized exactly when it minimizes length and
has constant speed. The distance between points of M (called the Carnot-Carathéodory
distance) is

dC (p, q) = inf {` (γ) : γ is horizontal and connects p with q} .

The horizontal gradient ∇Hf of a differentiable function f : M → R is the horizontal
vector field defined by

g
(
∇Hf,X

)
= X (f)

for all X ∈ Γ (H). Then

∇Hf =
k∑
i=1

ei (f) ei ,

if e1, ..., ek is an orthonormal frame for H at the point in question.

Lemma 3.1. If f is a smooth function and g
(
∇Hf,∇Hf

)
= 0, then f is constant.

Let (M,H, g) be a subriemannian manifold. For any pq ∈ T ∗qM , let

H (q, p) :=
1

2
(p, p)q

where (•, •)q is the cometric on T ∗qM . This is called the subriemannian Hamiltonian (kinetic

energy).
For any horizontal curve γ (t), then γ′ (t) = rγ(t) (p) for some p ∈ T ∗γ(t)M . We define the

Hamiltonian function

H (q, p) =
1

2
‖γ′ (t)‖2 .

The function H uniquely determines the sharp map r by polarization.

Lemma 3.2. The subriemannian structure is uniquely determined by its Hamiltonian. Con-
versely, any nonnegative fiber-quadratic Hamiltonian of constant fiber rank k < n gives rise
to a subriemannian structure whose distribution has rank k.

Normal geodesic equations:

(
qi
)′

=
∂H

∂pi
, p′i = −∂H

∂qi
.
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4. The subDirac operator

Let ∇ : Γ (H) × Γ (H) → Γ (H) be a metric connection on H. Note that ∇ is not an
ordinary derivation, because it only accepts vectors from H. Suppose that H is oriented
and admits a spin structure with associated spinor bundle S (bundle of irreducible Cl (H)-
modules), with spin connection ∇S. We will think more generally of Clifford modules that
are not necessarily irreducible at each point. Given a local orthonormal frame (e1, ..., ed) of
H, let

ωij (•) = g (∇•ei, ej) .
We define

∇S
Xϕ := X (ϕ) +

1

2

∑
i<j

ωji (X) ei · ej · ϕ,

where · denotes Clifford multiplication.
We define the sub-Dirac operator as

D =
∑

ej · ∇S
ej

: Γ (S)→ Γ (S) .

In particular, when D acts the bundle of differential forms, the result of D2 is the subLapla-
cian.
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