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1. Foliations

A (smooth) foliation F of a smooth manifold M is a partition of M complete, connected,
immersed submanifolds (leaves) of the same dimension such that for all x ∈M , there exists a
distinguished neighborhood N of x such that N ∼= Rp×Rq, where each Rp×{u} corresponds
to a subset (called a plaque) of a leaf. The set F is the collection of leaves, and L = TF ⊆
TM denotes the tangent bundle to F . Further, there is a compatibility condition on the
overlaps: the transition functions ϕij : Rp × Rq take the form

ϕij (x, y) =
(
ϕ1
ij (x, y) , ϕ2

ij (y)
)

where ϕ2
ij is a diffeomorphism of Rq and for fixed y, ϕ1

ij (·, y) is a diffeomorphism of Rp.

Example 1.1. Let M = Y ×F be a product manifold. Then the sets {y}×F form a foliation
of M .

Example 1.2. Let M = T 2 = R2�Z2, the torus, and let TF be the vectors of slope m in
the tangent spaces, so that F is the set of lines of slope m. Then F is a foliation. If m is
irrational, then each leaf is dense in M . Note also that the subspace topology of each leaf is
a topology on R that is not the standard topology. If m is rational, then each leaf is a circle.

Example 1.3. Consider the suspension of an irrational rotation φ of the sphere S2. This
means S2×R� ∼, where (p, t) ∼ (φ (p) , t+ 1). The leaves are of the form {p}×R� ∼, so
that each leaf is dense in the (latitude) × R� ∼, which is a torus away form the poles and
is a circle at the poles.

Example 1.4. Let G be a compact Lie group that acts on X by isometries. If all the orbits
of G have the same dimension, then the orbits form a foliation of X.

Example 1.5. On T 2 = R2�Z2, let the foliation be the union of the circle {0}×R�Z2 and
leaves in the open set (0, 1)×R�Z2 of the form

{(
x, 1

x
+ 1

1−x + c
)

: x ∈ (0, 1)
}
�Z2 for fixed

c ∈ R. Note that the closure of each noncompact leaf is itself union the circular leaf. We
call this a Reeb-type foliation.

Note that a foliation is more than the choice of a subbundle (distribution) L of the tangent
bundle TM . The famous Frobenius theorem states that a distribution L of TM is the
tangent bundle to a foliation F on M if and only if [ΓL,ΓL] ⊆ ΓL; that is, the bracket of
any two vector fields V , W such that Vx,Wx ∈ Lx for every x also satisfies [V,W ]x ∈ Lx. A
distribution L satisfying the condition [ΓL,ΓL] ⊆ ΓL is said to be involutive.

2. Riemannian foliations

A Riemannian foliation is a smooth foliation endowed with a metric gQ on the quotient
bundle Q = TM�TF such that this metric can be extended to a bundle-like metric g on
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M with gQ consistent with g restricted to the normal bundle NF of the foliation. The word
bundle-like means that the Lie derivative LXg⊥ of the transverse metric on NF is zero for
any leafwise vector fields X. Other equivalent conditions to this are that the normal bundle
NF is totally geodesic, or that a geodesic that is normal to a leaf at one point is normal to
all leaves that it meets. Another intuitive way of understanding such a metric is that these
requirements are equivalent to requiring that the leaves are locally equidistant.

Not every foliation can be given a metric so that it is a Riemannian foliation: there are
topological obstructions. For instance, in Riemannian foliations, the leaf closures partition
the manifold and are in particular disjoint. This does not happen in Example 1.5, so the
Reeb-type foliation is not Riemannian. However, the other four examples in the previous
section are Riemannian foliations in the obvious metrics.

Riemannian foliations are foliations with metrics for which it is possible to do some global
analysis and geometric analysis. They were introduced by Reinhart in [22] (see also [23]).

One example of a Riemannian foliation is obtained by looking at the orbits of a compact
Lie group action on a manifold such that all the orbits have the same dimension. Note that
in this case the entire metric is preserved in the leaf direction, i.e. LXg = 0 for all leafwise X.
For flows (1-dimensional foliations), the flow comes from an isometric flow in some metric if
and only if the foliation is taut (i.e. there exists a metric for which the leaves are minimal

submanifolds). However, the Álvarez class [κb] in basic cohomology H1
b is an obstruction to

this; here κb is the basic component of the mean curvature 1-form, which is always closed.
Here is an example of a Riemannian flow which is not isometric for any metric.

Example 2.1. We consider the Carrière example from [10] in the 3-dimensional case. Let
A be a matrix in SL2(Z) of trace strictly greater than 2. We denote respectively by V1 and
V2 the eigenvectors associated with the eigenvalues λ and 1

λ
of A with λ > 1 irrational. Let

the hyperbolic torus T3
A be the quotient of T2×R by the equivalence relation which identifies

(m, t) to (A(m), t+ 1). The flow generated by the vector field V2 is Riemannian. We choose
the bundle-like metric (letting (x, s, t) denote the local coordinates in the V2 direction, V1

direction, and R direction, respectively) as

g = λ−2tdx2 + λ2tds2 + dt2.

Notice that the mean curvature of the flow is κ = κb = log (λ) dt, since χF = λ−tdx is
the characteristic form and dχF = − log (λ)λ−tdt ∧ dx = −κ ∧ χF . The cohomology group
H1
b (M,F) is generated by [κb].

3. Smooth Singular Foliations

A smooth singular distribution L on a smooth manifold M is a collection {Lx : x ∈M}
where for each x, Lx is a subspace of TxM , and such that for every x ∈ M , there exists a
neighborhood U containing x such that L|U is locally spanned by smooth vector fields. That
is, there exists a collection {Vα}α∈A of smooth vector fields on U such that

Lx = span {Vα (x) : α ∈ A}
for each x ∈ U .

A smooth singular foliation is a partition of M into immersed submanifolds such
that the tangent bundle TF is a smooth singular distribution. The smoothness of singular
distributions was first developed independently by Stefan and Sussman in [26], [27]. It turns
out that there is a natural generalization of the Frobenius theorem to the setting of singular
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distributions/foliations — essentially the same statement. Incidentally, with Drager, Lee,
and Park, I proved that a smooth singular distribution on a smooth manifold is always
globally finitely generated, meaning that there always exists a finite set of vector fields on
the manifold such that the distribution is exactly the span of those vector fields (see [12]).

Example 3.1. Let V be any smooth vector field on a smooth manifold M . Then the orbits
of V form a smooth singular foliation of M .

Example 3.2. Let a compact Lie group G act on a smooth manifold M . Then the orbits of
G in M form a smooth singular foliation of M .

Given a singular foliation, a criterion that can be used to determine if it is smooth is the
following.

Proposition 3.3. Let (M,F) be a singular foliation, so that M is partitioned into complete,
connected (immersed) submanifolds in F . Then M is smooth if and only if every vector in
TF can be locally extended to a vector field that is smooth and is everywhere tangent to TF .

4. Singular Riemannian foliations

An SRF, a singular Riemannian foliation (M, g,F) is a smooth singular foliation F on
a Riemannian manifold (M, g) that satisfies the metric condition that geodesics orthogonal
to the leaves at one point are orthogonal to the leaves at any point. Sometimes, if the metric
is understood, we will simply use (M,F) to refer to the singular Riemannian foliation.

Note that if F is simply a partition of the Riemannian manifold (M, g) into complete
connected immersed submanifolds such that geodesics orthogonal to the leaves at one point
are orthogonal to the leaves at any point, (M, g,F) is called a transnormal system. So
a transnormal system is an SRF if in addition every leafwise vector can be extended locally
to a leafwise vector field.

Conjecture 4.1. (Folk Conjecture, according to Radeschi, still open) Every transnormal
system is an SRF.

If all the leaves of F have the same dimension, F is called regular. In this case, the
condition on g given above is equivalent to g being a bundle-like metric on a Riemannian
foliation.

Let the stratum Σr ⊆ M denote the union of leaves of dimension r. Then the restriction
of F and g to each Σr is a Riemannian foliation with bundle-like metric. The stratum corre-
sponding to leaves of the smallest dimension is a compact submanifold, called the minimal
stratum. The stratum corresponding to leaves of maximal dimension is open and dense in
M and is called the regular stratum. The closures of the leaves of a singular Riemann-
ian foliation are submanifolds, and the restriction of F to one of these leaf closures is a
[transversally locally homogeneous] regular Riemannian foliation.

A singular Riemannian flow is a singular Riemannian foliation such that the maximal
dimension of each leaf is one.

We say that a smooth vector field X on a smooth manifold M is a transverse Killing
vector field if there exists a Riemannian metric on M such that the singular flow generated
by X is a singular Riemannian flow. If the zero set Σ of X is nondegenerate, meaning the
normal Hessian of X is invertible at Σ, we say that X is a nondegenerate transverse
Killing vector field. One can always construct a nondegenerate transverse Killing vector
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field corresponding to any oriented singular Riemannian flow. We remark that in other
sources the term “transverse Killing” implies a choice of metric on the normal bundle to the
foliation, but we do not specify this metric in our definition.

Example 4.2. Let a compact Lie group G act on a smooth manifold M . Then the orbits
of G in M form a smooth singular foliation of M . Now let 〈 , 〉 be any metric on M , and

let 〈 , 〉 be the metric averaged over G; then with this new metric, the orbits of G in M
form a singular Riemannian foliation. In symbols, if v, w ∈ TxM , let g∗v, g∗w denote the
push-forwards of v, w to TgxM , so the definition of 〈 , 〉 is

〈v, w〉x =

∫
G

〈g∗v, g∗w〉gx dg,

where dg is the bi-invariant volume form on G such that
∫
G
dg = 1.

Example 4.3. Let (M,F) be a regular Riemannian foliation of a compact manifold. Then
the leaf closures partition the manifold and form an SRF

(
M,F

)
. This theorem is due to

Molino ([18]).

5. Polar foliations

One particular example of SRFs is what is called a polar foliation.
A polar action is isometric Lie group actions such that through every point there is a

submanifold, called a section, that meets every orbit orthogonally and the principal orbits
transversally. This is equivalent to the integrability of the normal bundle on the principal
stratum by Theorem 5.1 below.

A typical example of a polar action is the action of a compact Lie group on itself by
conjugation; the maximal tori are the sections. More generally the isotropy actions on
symmetric spaces are polar. A very similar structure can be found in submanifold theory.
The decomposition by parallel submanifolds of an isoparametric submanifold in the sphere
or in Euclidean space demonstrate similar properties. Now both these classes are special
cases of polar foliations, or SRFs admitting sections (the definition of a section is
essentially the same). In fact, some of the properties that are shared by polar actions and
isoparametric foliations can be derived for polar foliations. The slice theorem for polar
actions can be strengthened (see below). This states that the isotropy action on a slice of an
orbit is again a polar action. Likewise the slice theorem for polar SRFs can be strengthened
to say that the restriction of a polar foliation to a slice is again a polar foliation.

A singular Riemannian foliation (M, g,F) is called a polar foliation (or a singular
Riemannian foliation with sections) if, for each regular point p (point of the principal
stratum), there is an immersed submanifold Σp through p, called a section, whose dimension
is equal to the codimension of the foliation and that meets all the leaves perpendicularly. It
follows that Σp is totally geodesic. This is equivalent to the normal bundle NF restricted
to the principal stratum of (M,F) is integrable.

An integrable singular Riemannian foliation (ISRF) is an SRF such that normal
bundle is integrable on the principal stratum.

It is natural to ask if an ISRF is a polar foliation. The next result gives a positive answer
to this question (and also answers the simpler question for polar actions).

Theorem 5.1. (in [2]) Let (M, g,F) be an ISRF on a complete Riemannian manifold. Then
F is a polar foliation, and regular points are open and dense in each section.
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Polar group actions provide one particular example of polar foliations. Another important
class of examples is the partition of a Euclidean space into the parallel submanifolds of
an isoparametric submanifold N . Recall that a submanifold N of a Euclidean space is
called isoparametric if its normal bundle is flat and the principal curvatures along any
parallel normal vector field are constant. [Note that there are examples of inhomogeneous
isoparametric submanifolds.] In the slice theorem below, if (M, g,F) is polar then the

infinitesimal foliation F̂(q) is polar and hence isoparametric.

6. Molino Conjecture

Theorem 6.1. (Molino, 1980s, [18]) Given a SRF (M, g,F), let F be the collection of leaf
closures of F . Then F partitions M and forms a transnormal system.

Theorem 6.2. (Molino, 1980s, [18]) Given a (nonsingular) Riemannian foliation (M, g,F),
let F be the collection of leaf closures of F . Then F partitions M and forms a SRF.

Conjecture 6.3. (Molino, 1980s: The Molino Conjecture) Given a SRF (M, g,F), let
F be the collection of leaf closures of F . Then F partitions M and forms a SRF.

So, as can be seen above, the gap remaining for proving the Molino conjecture is to show
that F is actually smooth, i.e. to show that every vector tangent to a leaf closure can be
extended to a smooth vector field that is tangent to every leaf closure that it meets.

In Marcos Alexandrino and Marco Radeschi’s paper [4], the authors proved the Molino
conjecture for orbit-like foliations. A different strategy for proof of the conjecture in this
case was previously suggested in [19]. There also have been proofs of the conjecture in other
special cases (see [2] for the proof in the case of polar foliations).

Definition 6.4. Given a singular Riemannian foliation (M, g,F), the slice foliation at

p ∈ M , denoted
(
Sp, F|Sp

)
is defined as follows. The leaf of F through p is denoted Lp,

and νpLp ⊆ TM is the normal space to Lp at p. Given ε > 0, let νεpLp denote the set of
x ∈ νpLp of norm < ε. If ε is small enough, the normal exponential map exp : νεpLp →M is
a diffeomorphism onto its image Sp, called the slice of Lp at p. The slice foliation F|Sp is
the partition of Sp into the connected components of the intersection L ∩ Sp, with L ∈ F .

Definition 6.5. Given a singular Riemannian foliation (M,F), the infinitesimal folia-

tion at p ∈ M , denoted
(
νpLp, F̂p

)
is defined as follows. The foliation F̂p is defined as the

partition of νpLp, where the leaf at v ∈ νpLp is

Lv =
{
w ∈ νpLp : expp (tw) ∈ Lexpp(tv) ∀ suff. small t > 0

}
,

where Lexpp(tv) denotes the leaf of the slice foliation
(
Sp, F|Sp

)
through expp (tv).

Remark 6.6. Given a singular Riemannian foliation (M,F) and a submanifold N of M
that is a union of leaves of the same dimension, the infinitesimal foliation splits as a prod-

uct
(
νp (Lp, N)× νpN, {pts} × Fp|νpN

)
, where νp (Lp, N) = νpLp ∩ TpN . In this case, the

foliation
(
νpN, Fp|νpN

)
is the “essential part” of the infinitesimal foliation; by abuse of no-

tation, sometimes this is also called the infinitesimal foliation and is denoted Fp. Note that
the origin is always a leaf of Fp.
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A singular Riemannian foliation (M,F) is called homogeneous if there exists a connected
Lie group G acting by isometries on M , whose orbits are precisely the leaves of M . A singular
Riemannian foliation (M,F) is called orbit-like if at every point p ∈M , the infinitessimal
foliation (νpLp,Fp) is closed [i.e. consists of closed leaves] and is homogeneous.

Theorem 6.7. (Slice Theorem, [1]) Let (M, g,F) be a polar foliation on a complete
Riemannian manifold. Let q be a singular point (I think this can be any point) of M and let
Sq be a slice at q of radius ε. Then

(1) Sq =
⋃

σ∈A(q)

σ, where A (q) is the set of local sections σ containing q such that

dist (p, q) < ε for each p ∈ σ.
(2) Sx ⊂ Sq for all x ∈ Sq.
(3) F|Sq is a polar foliation on Sq with respect to the induced metric.

(4) The infinitesimal foliation F̂ (q) is polar and hence isoparametric.

Remark 6.8. An SRF (M, g,F) is called infinitesimally polar if its infinitesimal foliation
at each point is polar.

M. Alexandrino and M. Radeschi proved the Molino conjecture in complete generality in
[5].

The main theorem of the paper is the following.

Theorem 6.9. (Main Theorem of [5]) Let (M,F) be a singular Riemannian foliation.
Let L be a (possibly nonclosed) leaf, and let U be an ε-neighborhood of the leaf closure of L.

Then for ε small enough, there is a metric g` on U and a singular foliation F̂ ` on U such
that:

(1)
(
U, g`, F̂ `

)
is an orbit-like singular Riemannian foliation.

(2) The foliation F̂ ` coincides with F on L.

(3) The closure of F̂ ` is contained in the closure of F .

The superscript ` is supposed to make us think “linearized”. And then a corollary is:

Theorem 6.10. (Molino Conjecture Theorem, [5]) Let (M,F) be a singular Riemann-
ian foliation on a complete manifold, and let F =

{
L : L ∈ F

}
be the partition of M into

the closures of the leaves of F . Then
(
M,F

)
is a singular Riemannian foliation.

Proof. Molino himself proved that
(
M,F

)
is a transnormal system with closed leaves, so it is

enough to show that for any leaf L ∈ F with closure L and any vector v ∈ ν
(
L,L

)
:= νL∩L,

there exists a smooth extension of v to a vector field everywhere tangent to the leaves of F .

Let U be a tubular neighborhood of L, and let
(
U, F̂ `

)
be the foliation satisfying the main

theorem. Since F̂ ` is orbit-like, by previous work, there exists a vector field V extending v

that is tangent to the closure of F̂ `. Since the closure is contained in F , it follows that V is
also tangent to the leaves of F . �

Thus, the above facts will follow as long as we are able to construct g` and F̂ `. At each
point p of a leaf closure L, we construct the infinitesimal foliation Fp. Then, restricted to
νpLp, this is given by the orbits of a Lie group of isometries. We then take the closure of
this group of isometries and the corresponding orbits to yield the potentially larger foliation
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Fp, the “local closure” of Fp. Using the normal exponential map, we may transplant this
singular foliation to the tubular neighborhood U of L. Further, the foliation

(
L, F|L

)
may

be extended to a distribution
(
U, F̂

)
of the same dimension as F by taking horizontal lifts

to the total space of νεpLp. Finally, for v ∈ νεpLp we take TvF̂ ⊕ Fp to be a distribution
transplanted to U . Then it remains to be shown that this distribution is involutive, and

then we take the corresponding foliation to be F̂ `.
The metric g` is defined by first splitting TL into TL = T (F|L) ⊕ ν (F|L) and then

splitting TU |L into TU = T (F|L) ⊕ ν (F|L) ⊕ T
(
fibers of exp⊥

)
. The metric is then

defined as a direct sum metric and is extended in a natural way to all of U . Then g` and F̂ `
can be shown to have all the desired properties in the main theorem.

7. Related open questions

Problem 7.1. Classify polar actions on symmetric spaces, or on some manifolds in general.

This has been done for compact rank 1 symmetric spaces.

Problem 7.2. Classify SRFs on spheres and/or Euclidean space.

This was done by Gromoll and Grove for regular Riemannian foliations.in dimensions
1,2,3, and for SRFs in dimensions 1,2,3 by Radeschi.

Problem 7.3. Generalize results know for isometric group actions to SRFs.

We have one example of this in the next section.

8. Generalization of Bott’s characteristic number calculation

This work [21] is joint with Igor Prokhorenkov. We establish the structure of an oriented
singular Riemannian flow (M,F , g) in the tubular neighborhood of a component of the
singular stratum Σ := Σ0. This theorem resembles slice theorems (such as in [20], [3], [17]),
but the new results in this paper are stronger for flows in that they apply to the entire tubular
neighborhood of a singular stratum rather than to the neighborhood of a singular leaf. We
show that there exists a new metric g′ on M for which (M,F , g′) is a singular Riemannian
flow on M that restricts to an isometric flow on the tubular neighborhood. Note that
every vector field that generates an isometric flow for some metric on M is automatically a
nondegenerate transverse Killing vector field and thus generates a singular Riemannian flow.
It is easy to construct transverse Killing fields that are not global Killing vector fields for any
metric; equivalently, there are singular Riemannian flows that are not foliated-diffeomorphic
to singular isometric flows. See Examples 8.4 and 8.5.

In the paper’s main theorem, we provide the formula that computes characteristic numbers
of an even-dimensional, oriented closed manifold as the sum of residues at the components
of the zero set of a nondegenerate transverse Killing vector field that generates a singular
Riemannian flow. We prove that the Lie derivative of the field induces an isometric flow
on the normal bundle of each component of the singular stratum, and the residue at this
component is defined in terms of the invariants of this action. In the case when the singular
Riemannian flow is not orientable, the argument is easily handled by a modification of
the theorem. These theorems specialize to the results in [7] in the case when the singular
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Riemannian flow is in fact a global isometric flow for some metric. One simple consequence
is the formula for the Euler characteristic,

χ (M) =
∑
j

χ (Σj) ,

where Σj are the components of the singular stratum of a possibly nonorientable Riemannian
flow (M,F , g). This formula was previously known when Σj are the zero sets of a Killing
vector field; see [15]. We also derive a new formula for the signature of a manifold endowed
with a singular Riemannian flow whose singular stratum is a finite set of points.

The history of this problem is as follows. In the celebrated paper [8], R. Bott showed how
to compute the Pontryagin and other characteristic numbers from isolated singular points of
holomorphic vector fields or of infinitessimal isometries. In [9], he generalized his result in the
holomorphic case to allow vector fields whose zero sets are submanifolds. In [6], M. Atiyah
and I. Singer used the G-signature theorem, a special case of the index theorem, to give the
formula for the characteristic numbers of a singular isometric flow in terms of integrals of
characteristic forms over the singular stratum of the flow. In [7], P. Baum and J. Cheeger use
purely differential-geometric and Stokes’ theorem techniques to derive the same result. One
consequence of all these results is that if there exists a nonvanishing Killing vector field on a
closed Riemannian manifold, then all of its characteristic numbers vanish. In [11], Y. Carrière
showed that any Riemannian manifold with a nonsingular Riemannian flow has Gromov
minimal volume zero, so as a consequence all of the characteristic numbers of that manifold
are zero, consistent with our theorem. In [16], X. Mei considered a singular Riemannian
foliation and a variant of curvature coming from the curvature of the normal bundle to the
foliation. The author gave a formula for the residue of a characteristic polynomial of this
type of curvature at a connected component of the singular stratum. These are not the
same as the residues used to compute the characteristic numbers of the manifold, which are
computed in the paper with Igor.

We now introduce the notation of the main theorem, much of which is similar to that
in [7, Section 1]. Given any invertible linear transformation A ∈ o (2s), there exists an
orthonormal basis {e1, ..., e2s} for R2s such that Ae2j−1 = λje2j and Ae2j = −λje2j−1 and
λj ≥ 0 for each j. The numbers λj are called skeigen-values. It is well-known that if ψ
is an ad (SO (2s))-invariant symmetric complex-valued polynomial on o (2s), there exists a

unique polynomial ψ̂ : Rs+1 → C such that

ψ (A) = ψ̂ (λ1, ..., λs) .

for any such transformation A. The Pfaffian χ (A) of A is a particular example; χ (A) =
χ̂ (λ1, ..., λs) = ±λ1...λs, where the positive sign is chosen exactly when e1, ..., e2m is a posi-
tively oriented basis of R2s.

The given nondegenerate transverse Killing field X with singular set Σ, its linearization
restricts to each NxΣ to be a Killing field. The restriction of its Lie derivative to NxΣ is

a nonsingular skew-symmetric automorphism Px

(
LX |Γ(NΣ)x

)
, where Px : TxM → NxΣ is

the orthogonal projection. Further we multiply the endomorphism by a positive scalar cx
so that the resulting skeigen-values {αj} satisfy

∑
α2
j = 1 and each αj is nonzero. Let

Λν
X = cxPx

(
LX |Γ(NΣ)x

)
. We extend Λν

X by zero on TΣ to define the endomorphism ΛX :

TM |Σ → TM |Σ. The skeigen-values of ΛX and of Λν
X (i.e. the nonzero skeigen-values

of ΛX) are constant on each connected component of Σ. Let µ0 = 0, µ1, ..., µτ be the



INTRODUCTION TO SINGULAR RIEMANNIAN FOLIATIONS 9

distinct skeigen-values of ΛX . Furthermore, TM |Σ is the direct sum of skeigen-bundles
TM |Σ = E0 ⊕ E1 ⊕ ...⊕ Eτ , where E0 = TΣ and

(Ej)x = −µ2
j eigenspace of (ΛX)2

x

For each j ≥ 1, Eλj can be endowed with the complex structure 1
µ2j

(ΛX)2
∣∣∣
Eµj

with induced

orientation. We orient E0 = TΣ so that the orientation agrees with the induced orientation
from TM . We set the real fiber dimension of Ej to be 2mj, so that

∑τ
j=0mj = m = 1

2
dimM .

We now introduce forms aj; in the case where E0,..., Eτ are direct sums of line bundles, they
are the first Chern forms (or, classes if considered as elements of H∗ (Σ)) of the line bundle
components. In general, let a1, ..., am be such that

(1) The ith Pontryagin class of E0 is the ith symmetric function of a2
1, ..., a

2
m0

, and its
Euler class is a1...am0 .

(2) For i = 1, ..., τ , the kth Chern class of Ei the kth elementary symmetric function of
those a2

j such that m0 + ...+mi−1 + 1 ≤ j ≤ m0 + ...+mi.

Let λ1, ..., λm be the list of real numbers 0, ..., 0︸ ︷︷ ︸
m0 times

, µ1, ..., µ1︸ ︷︷ ︸
m1 times

, ..., µτ , ..., µτ︸ ︷︷ ︸
mτ times

, so that they are

the skeigen-values of ΛX . We define

ψ (ΛX) := ψ̂ (λ1 + a1, ..., λm + am) .

One specific example we will use is

χ (Λν
X) = (λm0+1 + am0+1) ... (λm + am) .

There is a technical change we need to make in the case Σ is a point, in which case
TM = E1 ⊕ ...⊕Eτ , and it may be the case that the orientation induced from the complex
structures on the Ej does not produce the given orientation of TM . In this case, we instead
let

ψ (ΛX) := ψ̂ (−λ1 − a1, λ2 + a2, ..., λm + am) .

Theorem 8.1. Let (M, g) be a compact, oriented Riemannian manifold of dimension 2m
that is endowed with an oriented singular Riemannian foliation F . Let X be a nondegenerate
transverse Killing vector field on M whose span is TF . Let φ be an ad (SO (2m))-invariant
symmetric form of degree m on o (2m). Then the characteristic number φ (M) defined by φ
satisfies

φ (M) =
∑
j

φ (ΛX)

χ (Λν
X)

[Σj] ,

where Σj are the connected components of the singular stratum Σ of F .

Proof. The vector field X globally generates a singular Riemannian flow. For p near Σ, we

replace X with X̃ = d
dt

exp⊥
(

exp (tΛν
X)
(
exp⊥

)−1
(p)
)∣∣∣

t=0
where exp⊥ : NΣ → M is the

normal exponential map and exp : so (2k) → SO (2k) is the Lie group exponential with
2k = 2m − dim Σ. The flow of this vector field is the same as the flow of X, and in a nice

metric, X̃ is an isometric flow near Σ. We then need only calculate each

− lim
δ→0

∫
∂TδΣj

η1 .
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We refer to [7, proof of Theorem C] for the calculation of the residue, where the calculation

is local and only uses the fact X̃ is Killing in the small tubular neighborhood. Since the final

formula of the limit is the same for both X and X̃, the result follows. �

Remark 8.2. For the special case where Σj is an isolated fixed point p,

φ (ΛX)

χ (Λν
X)

[Σj] =
φ (ΛX)

χ (Λν
X)

(p)

=
ψ̂ (λ1 + a1, λ2 + a2, ..., λm + am)

(λ1 + a1) (λ2 + a2) ... (λm + am)
(p) .

Remark 8.3. The theorem above can easily be adapted to the case where the characteristic
numbers come from the curvature of a more general foliated vector bundle over M . In this
case, X acts canonically on such a bundle.

Example 8.4. The following singular foliation is from [24, Section 3.4]. Consider the fo-

liation on S4 defined as follows. Let v =

(
α
β

)
be an eigenvector of a symmetric matrix

B ∈ SL (2,Z) with positive irrational eigenvalues. We consider S4 to be a suspension of
S3 ⊆ C2, and we foliate each S3 by the curves t 7→ (exp (itα) z1, exp (itβ) z2). This nonsin-
gular isometric flow on S3 extends to an isometric flow of S4, with two fixed points at the
poles. Note that each generic leaf closure of the flow is a two-dimensional torus. A tubular
neighborhood of such a torus is isometric to a solid torus of the form D2×T 2, where D2 is a
two-dimensional disk, and where the boundary of this tube is a (rectangular) 3-torus S1×T 2.
Choose two tubes Tube1 and Tube2 like this inside S4 that are isometric and disjoint. We

glue the two boundary components of S4 \ {Tube1 ∪ Tube2} via the 3× 3 matrix

(
1 0
0 B

)
,

which is a foliated diffeomorphism between the boundary components. This is equivalent to
attaching a handle. The result is the manifold

M =
{
S4 \ {Tube1 ∪ Tube2}

}
/ ∼ ,

where the equivalence relation ∼ is given by the gluing map described above. For a small
interval I, we use the product metric on (∂Tube1)×I ∼= (∂Tube2)×I, and using a basic par-
tition of unity (a partition of unity that is constant on the leaves) we patch this to the original
metric on S4 \ {Tube1 ∪ Tube2}. The original foliation induces a singular Riemannian flow
on M with this metric. It was shown in [24, Section 3.4] that this flow is not isometric. In
fact, we certainly could attach more handles as desired. In any case, we could now compute
for example the Euler characteristic of this manifold using Theorem 8.1. The residue at each
pole is 1, so that

χ (M) = 1 + 1 = 2.

The same result could be obtained from the Hopf index theorem.

Example 8.5. Consider the manifold CPm, with homogeneous coordinates [z0, ..., zm]. Con-
sider the isometric flow parametrized by the curves t 7→ [z0, exp (itα1) z1, ..., exp (itαm) zm],
where (α1, ..., αm) is an eigenvector of a specific matrix A ∈ SL (m,Z), where {α1, ..., αm}
is linearly independent over Q. This isometric flow has m + 1 fixed points [1, 0, ..., 0],
[0, 1, 0, ..., 0], ...,[0, 0, ..., 0, 1]. Similar to the last example, we note that generic leaf closures
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of the flow are m-dimensional tori. A tubular neighborhood of such a torus is isometric to a
tube of the form Dm×Tm, where Dm is a m-dimensional disk, and where the boundary of this
tube is of the form Sm−1×Tm. Choose two tubes Tube1 and Tube2 like this inside CPm that
are isometric and disjoint. We glue the two boundary components of CPm\{Tube1 ∪ Tube2}
via the map id× A, which is a foliated diffeomorphism between the boundary components.
The result is the manifold

M = {CPm \ {Tube1 ∪ Tube2}} / ∼ ,

where the equivalence relation ∼ is given by the gluing map described above. For a small
interval I, we use the product metric on (∂Tube1) × I ∼= (∂Tube2) × I, and using a basic
partition of unity we patch this to the original metric on CPm \ {Tube1 ∪ Tube2}. The
original foliation induces a singular Riemannian flow on M with this metric. Similar to
what is shown in [24, Section 3.4], we can see that this flow is not isometric. However, we
may apply Theorem 8.1 to compute the signature of M . On a small neighborhood of each
singular point [0, . . . , zj = 1, 0, . . . , 0], the foliation has the form of the flow

(z0, z1, . . . , ẑj, . . . , zm) 7→ (exp(−itαj)z0, exp(it(α1 − αj))z1, . . . , ẑj, . . . , exp(it(αm − αj))zm),

letting α0 = 0. Then the residue calculation for the signature gives

σ(M) =
m∑
j=0

m∏
i=0, 6=j

sgn (αi − αj) =

{
1 if m is even,
0 if m is odd

.

We see that the surgery did not alter the signature.

9. Generalization of the Álvarez class

Recall that for a Riemannian foliation, the basic component κb of the mean curvature
one-form is always closed and determines a class in basic cohomology H1

b (M,F). This class
is trivial if and only if the foliation is taut (minimalizable). The form κb plays a crucial role
in the study of Laplacians and Dirac operators on Riemannian foliations.

In [25], the authors generalize this result to the case of a singular Riemannian foliation K
on a compact manifold X. In the singular case, no bundle-like metric on X can make all
the leaves of K minimal. They prove that the Álvarez classes of the strata can be glued in
a unique global Álvarez class. As a corollary, if X is simply connected, then the restriction
of K to each stratum is geometrically taut, thus generalizing a celebrated result of E. Ghys
for the regular case.

Theorem 9.1. (in [25]) Let K be an SRF on a closed manifold X. Then there exists a

unique class κX ∈ H1
b (X,K) that contains the Álvarez class of each stratum. More precisely,

the restriction of κX to each stratum S is the Álvarez class of (S,KS).

10. Differential Operators

There are many well-known properties of elliptic operators such as Laplacians and Dirac
operators on manifolds. There are important generalizations of these operators to the equi-
variant setting (where a compact Lie group acts by isometries) and to the Riemannian
foliation setting. Here are some open questions concerning differential operators on SRFs.
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Problem 10.1. Suppose that we are given a smooth basic function f on an SRF, and then
use that an initial value for the ordinary heat equation:(

∂

∂t
+ ∆x

)
u (x, t) = 0; u (x, 0) = f (x) .

Under what conditions is it true that the temperature distribution u (x, t) is basic for each t?
Note that in the case of a compact Lie group action by isometries, this is always true. For
Riemannian foliations, this is true exactly when the mean curvature is basic. We conjecture
that the same is true for SRFs.

Problem 10.2. Is there an appropriate Laplacian on basic functions and basic forms of an
SRF that has discrete spectrum? If so, does the heat kernel exist and have asymptotics that
depend on the geometry? Is basic cohomology finite-dimensional, and is there an appropriate
Hodge theorem? Does elliptic regularity hold?

Problem 10.3. Are there Dirac operators such as the basic and transverse Dirac operators
that are natural for this kind of geometric situation? If so, is the spectrum discrete, and in
what ways are they similar to Dirac operators on manifolds and singular spaces? Is there a
version of index theory for this situation?

Problem 10.4. In the last two problems, does mean curvature play a role as in the case of
Riemannian foliations?

One possible approach to such problems is to work on the principal stratum, where the
SRF is a regular Riemannian foliation. This stratum is an open and dense subset of the
manifold; however it is noncompact and not complete.
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