
INTRO TO INDEX THEORY

1. Introduction to Introduction to Index Theory

Let X be a compact Riemannian manifold of dimension n. Let V
pV→ X and W

pW→ X be
smooth complex vector bundles, both with rank m. Let Sect∞ (V ) denote the set of smooth
sections of V . Let

D : Sect∞ (V )→ Sect∞ (W )

be called a first order differential operator if for all s ∈ Sect∞ (V ), we may write locally

Ds =
n∑
k=1

Ai (x)
∂s

∂xi
+B (x) s,

where Ai, B are m × m matrices that varies smoothly in x. Note that we have the ball
bundle

B (T ∗X)
π→ X,

and so we have the vector bundle

π∗V → B (T ∗X) .

(Note that π∗V = {(ξ, v) ∈ B (T ∗X)⊕ V : π (ξ) = p (v)}.) We define the principal symbol
σ (D) of D as the bundle homomorphism

σ (D) : π∗V → π∗W

such that

iσ (D) (ξ, v)x = D (fs) (x)− f (x) (Ds) (x) ,

where f ∈ C∞ (X) with dfx = ξ. We say that D is elliptic if σ (D) (ξ, v)x is invertible for all
x ∈ X, v ∈ V , ξ ∈ T ∗xM� {0}.

If D is elliptic, then kerD and kerD∗ are finite dimensional and consist of smooth sections.
Amazingly, though the dimensions of kerD and kerD∗ may change as you deform D, the
index

index (D) := dim ker (D)− dim ker (D∗)

only depends on the homotopy class of σ (D). An index theorem is a formula for the index
of D in terms of σ (D).

2. K-theory

Let X be a compact Hausdorff space, and let V a complex vector bundle over X. Let
[V ] denote the isomorphism class of V . Let K0 (X) be the Grothendieck (abelian) group of
isomorphism classes (formal differences) of vector bundles over X. That is,

K0 (X) = {[V1]− [V2] : V1, V2 vector bundles over X}�˜,

where [V1]− [V2] ˜ [W1]− [W2] if

V1 ⊕W2 ⊕ Ṽ ∼= W1 ⊕ V2 ⊕ Ṽ
1
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for some vector bundle Ṽ . The addition operation is the direct sum. For another example,
the Grothendieck completion of N is Z. Note that K0 is a contravariant functor from compact
Hausdorff spaces to abelian groups. That is, a continous map φ : X → Y induces a map
φ∗ : K0 (Y )→ K0 (X).

Noncompact version of K-theory: Suppose that X is locally compact and Hausdorff. Let
X+ be the one-point compactification of X, with + denoting the extra point. We define

K0 (X) := ker
(
K0
(
X+
) inc∗→ K0 (+)

)
,

so that

K0
(
X+
) ∼= K0 (X)⊕K0 (+)

∼= K0 (X)⊕ Z.

This is the set of formal differences of vector bundles that are isomorphic outside a compact
set, mod equivalence. Note that the morphisms in the locally compact category are those
continous functions that are extendable to +. We have the following exact sequences

0→ K0 (X)→ K0
(
X+
)
→ K0 (+)→ 0

K0 (X r A)→ K0 (X)→ K0 (A)

Extra functorality: Let X be a locally compact Hausdorff space, and let U ⊂ X be an
open subset. Then we have an induced homomorphism

K0 (U)→ K0 (X)→ K0 (X r U) .

(The first map: take the difference of bundles to be [A] − [B], with B trivial. Clearly
B extends trivially, and then one glues [trivial] − [trivial] on X r U to [A] − [B] over U
via (isomorphism)− (identity), where “isomorphism” is the isomorphism between A and B
outside a compact subset of U .)

Let (X,A) be a compact pair, that is, A is a nonempty closed subset of a compact Hausdorff
space X. Consider triples (V,W, σ) where V and W are vector bundles over X, and σ :
V |A → W |A is a bundle isomorphism (restricted to A, but it could be extended to a bundle
homomorphism to X via Tietz extension theorem). We say that (V1,W1, σ1) ∼= (V2,W2, σ2)
if there exist bundle isomorphisms α : V1 → V2 and β : W1 → W2 such that the diagram

V1|A
σ1→ W1|A

↓ α|A ↓ β|A
V2|A

σ2→ W2|A
commutes. Let

V (X,A) = isomorphism classes [V,W, σ] ,

with the addition

[V1,W1, σ1] + [V2,W2, σ2] := [V1 ⊕ V2,W1 ⊕W2, σ1 ⊕ σ2] .

Let

Triv (X,A) = {[V, V, id] : V a v.b. over X} .
Then
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Theorem 2.1. The monoid quotient

K0 (X,A) := V (X,A)�Triv (X,A)

is an abelian group.

As a consequence,
− [V,W, α] =

[
W,V, α−1

]
.

Theorem 2.2. The following sequence is exact:

K0 (X,A)→ K0 (X)→ K0 (A) ,

where the first map is [V,W, α] 7→ [V ]− [W ].

Theorem 2.3. K0 (X,A) ∼= K0 (X r A).

Theorem 2.4. (Thom isomorphism) Let V → X is a complex vector bundle over a compact
Hausdorff space X. Then

K0 (V ) ∼= K0 (X) .

3. The Atiyah-Singer Index Theorem

3.1. Pre-construction of the topological index. Let X be a (not necessarily compact
manifold). Let Y ⊂ X be a submanifold of lower dimension. Let N be the normal bundle
of Y ⊂ X, thought of as an open tubular neighborhood of Y in X. The normal bundle to
TY in TX looks like N ⊕N ∼= N ⊗ C. By the Thom isomorphism theorem,

K0 (TY ) ∼= K0 (N ⊗ C) ↪→ K0 (TX) .

This composition i! : K0 (TY )→ K0 (TX). Next, embed M into RN . Then

i! : K0 (TM)→ K0
(
TRN

) ∼= K0
(
R2N

) ∼= K0
(
CN
) ∼= K0 ({0}) ∼= Z

(last one by Thom isomorphism). We call the composition of isomorphisms (q!)
−1. The

topological index
t− ind : K0 (TM)→ Z

is defined to be
t− ind = (q!)

−1 ◦ i!.
Note

K0 (TX) ∼= K0 (T ∗X) ∼= K0 (B∗X,S∗X) .

4. The analytic index

Given an elliptic differential operator

D : C∞ (V )→ C∞ (W )

over a compact manifold X with symbol σ, we have [π∗V, π∗W,σ] ∈ K0 (B∗X,S∗X), where
π : T ∗X → X is the vector bundle projection. So we define

t− ind (D) = t− ind ([π∗V, π∗W,σ]) .

Given any element
[
Ṽ , W̃ , α

]
∈ K0 (B∗X,S∗X), choose any elliptic pseudodifferential op-

erator P : C∞
(
V̂
)
→ C∞

(
Ŵ
)

such that
[
Ṽ , W̃ , α

]
= [π∗V, π∗W,σ (P )] ∈ K0 (B∗X,S∗X).
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One can always choose such a P (see original Atiyah-Singer papers in the Annals). The
analytic index

a− ind : K0 (B∗X,S∗X)→ Z
is defined to be [

Ṽ , W̃ , α
]
7→ dim kerP − dim kerP ∗.

Theorem 4.1. (Atiyah-Singer Index Theorem) We have a− ind = t− ind.

This may be translated as an integral of characteristic forms by using the Chern character
from K-theory to cohomology. Actually, the Chern character is a natural transformation
from the K-theory functor to the cohomology functor.

5. K-homology

Let D : C∞ (V ) → C∞ (W ) be an elliptic operator over X. Atiyah realized that this
should give some kind of K-homology theory. Let Θn (X) be the trivial bundle of rank n
over X. Then you can extend it by

DΘn(X) := D ⊗ In : C∞ (V ⊗Θn (X))→ C∞ (W ⊗Θn (X)) .

This is called by “twisting” by a trivial bundle. If Ṽ is an arbitrary vector bundle over X,

embed Ṽ into ΘN (X) for N sufficiently large. Let

P : ΘN (X)→ Ṽ

be the orthogonal projection (equivalent to choosing a connection). Then you can define

DV = P
(
DΘN (X)

)
P : C∞

(
V ⊗ Ṽ

)
→ C∞

(
W ⊗ Ṽ

)
,

which is D twisted by V .
Let the K-homology K0 (X) of X is the dual theory to K0 (X). It should be true that

K0 (X) is generated by elliptic operators. In fact, there is a pairing

K0 (X)⊗K0 (X)→ Z
given by

[D]⊗ [V ] 7→ index (DV ) ,

which is nondegenerate. But there needs to be some K-theory orientation, which amounts
to X being spinc. In that case, the associated Dirac operator ∂ gives a map

[∂]⊗ · : K0 (X)→ K0 (X) ,

which is an isomorphism.

6. The cohomological form of the index theorem

6.1. Characteristic classes of vector bundles. Let E →M be a complex vector bundle
of rank n, and let P → M be the corresponding bundle of unitary frames of E. Let ω be
the u (n)-valued connection one-form on M , thus a skew-Hermitian matrix-valued one-form
on M . This connection is related to the other notions of connection, such as

∇ : Γ (M,E)→ Γ (M,T ∗M ⊗ E)

via the following formula. If (eβ) = (e1, ..., em) is a local unitary frame field for E, then

∇eβ = ωαβ ⊗ eα
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The curvature Ω of the connection ω is a u (n)-valued 2-form on M defined by the formula

Ω = dω + ω ∧ ω,
or more precisely

Ωα
β = dωαβ +

∑
k

ωαγ ∧ ω
γ
β.

Observe that the curvature operator R (· , ·) is related to this form, as follows. For any X,
Y ∈ Γ (M,TM) and Z ∈ Γ (M,E), we have

Ω (X ∧ Y )Z = R (X, Y )Z.

The Chern classes ck (E) of the vector bundle E are defined by the formula

det

(
I +

it

2π
Ω

)
=
∑

ck (E) tk.

The formula only defines ck (E) as a form of degree 2k, but in fact the cohomology class of
this form is independent of the choice of connection. If the complex bundle E has rank n,
one obtains n different characteristic classes (unless one counts c0 (E) = 1).

The total Chern class c (E) is the class in H∗ (M) defined as

c (E) =
∑

ck (E) .

The Chern numbers are the numbers obtained by integrating linear combinations of prod-
ucts of Chern classes over M . The top Chern class cn (E) of a vector bundle is the same
as the Euler class e (ER) of its realization as a real vector bundle. The top Chern number
is the obstruction to finding a nonzero section of E (ie if there exists a section of E, then
cn (E) = 0). If cn (E) = 0, then cn−1 (E) is the obstruction to find a pair of nonzero sections
of E that are linearly independent at each point. And so on ....

Example 6.1. Consider the Riemann sphere CP 1 with the Kähler metric

h =
dzdz

1 + |z|2
.

The tangent bundle TCP 1 is a complex line bundle, and the curvature of the Levi-Civita
connection is

Ω =
2dz ∧ dz(
1 + |z|2

)2 .

The resulting Chern class is

c1

(
TCP 1

)
=

[
i

2π
Ω

]
= e

((
TCP 1

)
R

)
.

The Chern number corresponding to this class is the Euler characteristic.∫
c1 =

i

2π

∫
Ω = 2.

Example 6.2. The tautological line bundle T over CP k has total Chern class

c (T ) = 1− H̃,

where H̃ is the form/class that is the Poincaré dual of the submanifold CP k−1 ⊂ CP k.
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Other characteristic classes are obtained from the Chern forms by taking wedge products
and linear combinations of the forms ck (E). One useful way of defining other characteristic
classes is to pretend that the bundle is a direct sum of line bundles. Note that the only
nontrivial class of a line bundle L is

x = c1 (L) .

If

E = L1 ⊕ L2 ⊕ ...⊕ Ln,
then let

xj = c1 (Lj)

for each j, and we see that

c1 (E) =
∑

xj,

c2 (E) =
∑

xjxk,

and in general cj (E) is the jth elementary symmetric polynomial in the xk’s. Because of
the splitting principle, one may often assume that the vector bundle is a direct sum of line
bundles; if one is able to prove an identity in the Chern classes by using this assumption,
then the result is true in general. In any case, expressing characteristic classes in terms of
the xk’s instead of the ck’s is often convenient. Here is a list of useful characteristic classes.
In all cases, we expand by a Taylor series and truncate (such as when the degree exceeds the
dimension of the manifold). As before n is the rank of E.

Total Chern class c (E) =
∏

(1 + xj) =
∑

cj (E)

Euler class e (ER) =
∏

xj = cn (E)

Chern character ch (E) =
∑

exj = n+ c1 (E) +

(
c1 (E)2

2
− c2 (E)

)
+ ...

A-roof class Â (E) =
∏ xj/2

sinh (xj/2)

Todd class TdC (E ⊗ C) = Â (E)2 =
∏ xj

1− e−xj

L class L (E) =
∏ xj

tanh (xj)

The most important one of these is the Chern character, which is a ring homomorphism

ch : K (X)→ Heven (X) ,

which is an isomorphism onto rational cohomology. This homomorphism extends to the
compactly supported versions. The reason for this is that if E1 and E2 are two vector
bundles, then

ch (E1 ⊕ E2) = ch (E1) + ch (E2) ,

ch (E1 ⊗ E2) = ch (E1) ch (E2) .
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Note that the following diagram does NOT commute:

Kcpt (X)
ch→ Heven

cpt (X)
↓i! ↓i!

Kcpt (E)
ch→ Heven

cpt (E)

where i! is the Thom isomorphism. The commutativity defect is measured by the Todd class:

(i!)−1 ◦ ch ◦ i! = (−1)n TdC
(
E
)−1

.

When the vector bundle is the tangent bundle of a manifold M , the classes are often
denoted

c (M) = c (TM) ,

Â (X) = Â (TX) , etc.

6.2. The index theorem. The topological index may be reexpressed using the Chern
classes.

Theorem 6.3. (Cohomological form of the Atiyah-Singer Index Theorem) If σ is the prin-
cipal symbol of D, then

a− ind (D : Γ (X, V )→ Γ (X,W )) = t− ind ([π∗V, π∗W,σ])

= (−1)n(n+1)/2
[
π! (ch (σ)) Â (X)2

]
[X] ,

where π! is the Thom isomorphism, with π : TX → X.

This theorem reduces to many other known theorems when the indices of specific differ-
ential operators are computed. The results are as follows:

Corollary 6.4. (Gauss-Bonnet)

χ (X) = index (d+ d∗|Ωeven→Ωodd)

=

∫
Pf (X) .

Corollary 6.5. (Hirzebruch-Riemann-Roch)

χ (X, V ) = index

(
∂ + ∂

∗
∣∣∣
Ω∗,0

even⊗V→Ω∗,0
odd⊗V

)
= (ch (V )TdC (X)) [X] .

Corollary 6.6. (Hirzebruch Signature Theorem)

signature (X) = index (d+ d∗|Ω+→Ω−)

= L (X) = (L (TX)) [X]

Corollary 6.7. (spin Dirac operator index)

index
(
D+
∣∣
S+⊗E→S−⊗E

)
=
(
ch (E) Â (X)

)
[X] .
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