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1. Introduction to the Selberg Trace Formula

This is a talk about the paper H. P. McKean: Selberg’s Trace For-
mula as applied to a compact Riemann surface (1972). For simplicity,
assume that M is a compact Riemannian manifold. Consider classical
mechanics on M , where a free particle on M moves along geodesics. If
M has infinite fundamental group, then in each free homotopy class of
a curve on M , there is a unique closed geodesic. If M is a Riemann
surface of genus ≥ 1, we can look at the length of the (unique) closed
shortest geodesic in each equivalence class from π1 (M).

Next, consider quantum mechanics. Eigenvalues of the Laplacian on
the manifold

0 = γ1 < γ2 ≤ γ3 ≤ ... ↑ +∞
γj is the energy of the jth “pure” state. We expect that there is a
relation between the classical data (lengths of closed geodesics) and
quantum data (eigenvalues). The Selberg trace formula provides this
link. So there should be a “Selberg trace formula” on any manifold.
There are many examples of this. When the manifold has a lot of
symmetry (eg hyperbolic space mod a subgroup of PSL (2,R)), there
is an example.

Starting with the 19th century: the Poisson summation formula.
Let M = C�L be the 2-torus, where L is an integral lattice. We let
L be the integral span of 1 and a+ ib. Consider the Laplacian on this
surface. Then the Laplacian will be

∆ = −
(
∂2

∂x21
+

∂2

∂x22

)
acting on L-periodic functions. The eigenfunctions are

f (x) = exp (2πiω′ · x) ,

where ω′ is an element of the dual lattice: that is ω′·ω ∈ Z for all ω ∈ L.
The corresponding eigenvalues are 4π2 |ω′|2. The Poisson summation
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formula relates the theta functions of L and its dual lattice L′, as
follows: ∑

ω′∈L′

exp
(
−4π2 |ω′|2 t

)
=

area (M)

4πt

∑
ω∈L

exp

(
−|ω|

2

4t

)
,

or ∑
λj

exp (−λjt)︸ ︷︷ ︸
quantum side

=
area (M)

4πt

∑
|ω| length of closed geodesics

exp

(
−|ω|

2

4t

)
︸ ︷︷ ︸

classical side

The theta function in physics language is the partition function.
Also, this is the trace of the heat kernel:

tr (exp (−t∆)) =
∑
λj

exp (−λjt) ,

where exp (−t∆) is the heat operator. The heat equation is

∂

∂t
K = −∆xK; K (0, x, y) = δ (x− y) ,

tr (exp (−t∆)) =

∫
M

K (t, x, x) dx

In the case of the torus,

KT (t, x, x) =
∑
γ∈L

KR2

(t, γ (x) , x) .

On the circle,

KS1

(t, x, x) =
∑
n∈Z

KR (t, x+ n, x) .

To prove the Poisson summation formula, one expands the left side
in terms of the Fourier series and uses the known heat kernel for R :
KR (t, x, y) = 1√

4πt
exp

(
− |x−y|

2

4t

)
.

The knowledge of the spectrum of the Laplacian determines |a| and
|b|, as follows. For our torus with the lattice above, area(M) = |b|.
After this, subtract terms from both sides the parts corresponding to

geodesics with length 1, 2, 3, ... The next geodesic will be
√
|a|2 + |b|2,

so we can find |a|. So we can determine the torus up to reflection.
Next, we generalize to a hyperbolic Riemann surface M with genus

g ≥ 2. Then the spectrum σ (M) of the Laplacian is

0 = γ1 < γ2 ≤ γ3 ≤ ...→ +∞.
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The Selberg trace formula relates the trace

tr (exp (−t∆)) =
∞∑
j=1

exp (−tλj)

of the heat kernel to the kind of dual theta function. The role of the
lattice L is taken over by the conjugacy classes Q of G = π1 (M),
identified with a subgroup of SL (2,R). Then

M = SL (2,R)�G.
The numbers |w| are replaced by

l (Q) = 2 cosh−1
(

1

2
tr (Q)

)
.

Here, Q is a free deformation class of closed paths on M , and l (Q)
is the length of the shortest path in this class. There is a famous
(noncompact) cases that we will not cover

M = SL (2,R)�SL (2,Z)

or

M = SL (2,R)�Γ

where Γ is an algebraic subgroup of SL (2,Z). Audrey Terras and Serge
Lang have good books on the subject. Also there is a survey paper by
Werner Müller.

2. Riemann surface formula

Let M be a compact Riemann surface of genus g ≥ 2. By the
Riemann uniformization theorem, the universal cover is the upper half
plane H.

H = {(x1 + ix2) : x2 > 0}
This is also called the Poincaré hyperbolic plane, with metric

ds2 =
dx21 + dx22

x22

(You can also realize this as the Poincare disk.) The fundamental
group π1 (M) acts by deck transformations on H that are isometries

z 7→ az+b
cz+d

, such that det

(
a b
c d

)
= 1 with a, b, c, d ∈ R. So SL (2,R)

is the group of isometries of H. Thus, we can identify π1 (M) with a
subgroup G of SL (2,R). The G has a fundamental region in H that is
a hyperbolic polygon with 4g sides.
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What must be true about G in order that H�G is a compact Rie-
mann surface? Note that SL (2,R) = KAN , where K = SO (2) ={(

cos (θ) − sin θ
sin θ cos θ

)}
is the stabilizer of i. The group A is the group

of magnifications

{(
a 0
0 a−1

)
: a > 0

}
. The group N is the group of

horizontal translations, N =

{(
1 b
0 1

)
: b ∈ R

}
.

Proposition 1. For any g ∈ SL (2,R), g is conjugate to

• rotation iff tr (g) < 2 (elliptic)
• magnification iff tr (g) > 2 (hyperbolic)
• translation iff tr (g) = 2 (parabolic)

The hyperbolic distance d (x, y) satisfies

d (x, gx) = d (kx, kgx)

= d
(
kx,
(
kgk−1

)
kx
)
,

for all k, g in SL (2,R). So

inf
x
d (x, gx) = inf

x
d
(
kx,
(
kgk−1

)
kx
)

= inf
x
d
(
x,
(
kgk−1

)
x
)

Think of elements of G as homotopy classes of closed paths on M
with fixed base point.

Free homotopy classes of M are identified with the conjugacy class
Q = {kgk−1 : k ∈ G}.

Every nontrivial element of G is conjugate to a hyperbolic element.
(Proof: if an element g of G is not the identity, then there is a geodesic
of minimum length connecting some x to gx, but if g is parabolic or
elliptic, this length can go to zero.) Thus it is conjugate to a magnifi-
cation, and thus ` (gn) = |n| ` (g) is true, where ` (g) = infx d (x, gx) is
the length of the shortest path.

For every g ∈ G that is nontrivial, it can be expressed in a unique
way as the positive power of a primitive element p ∈ G (primitive: it
is not the power of any other element of G).

Proposition 2. As p runs through the inconjugate primitive elements
in G and n through the positive integers, the conjugacy class

Q =
{
kpnk−1 : k ∈ G�Gp

}
runs through the conjugacy classes of G. Here, Gp is the centralizer of
p. Moreover, for fixed p, n, elements kpk−1 run once through Q as k
runs through G�Gp .
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Note that d (x, y) = cosh−1
(

1 + ‖x−y‖
2x2y2

)
, ` (pn) = n |logm2| where

p ∼
(
m 0
0 m−1

)
.

Theorem 3. (Selberg trace formula) Start with a function K : R→ R
that decays sufficiently rapidly as x→∞. Then KH (x, y) = K (cosh d (x, y))
is a function on H×H. It induces a symmetric kernel on M ×M via

KM (x, y) =
∑
g∈G

KH (x, gy) .

Then

KM (x, hy) = KM (x, y)

for all h ∈ G. Then, with dx = dx1dx2
x22

= hyperbolic volume element

trKM : =

∫
M

KM (x, x) dx

= area (M)K (1) +
∞∑
n=1

∑
inconjugate
primitive p

` (p)√
cosh ` (pn)− 1

∫ ∞
cosh `(pn)

K (b) db√
b− cosh ` (pn)

.

Proof. Let F be a fundamental domain of M . We have

trKM =

∫
F

KM (x, x) dx

=
∑
g∈G

∫
M

K (cosh d (x, gx)) dx

= area (M)K (1) +
∞∑
n=1

∑
inconjugate
primitive p

∑
k∈G�Gp

∫
F

K
(
cosh d

(
x, kpnk−1x

))
dx

= area (M)K (1) +
∞∑
n=1

∑
inconjugate
primitive p

∑
k∈G�Gp

∫
F

K (cosh d (x, pnx)) dx

= area (M)K (1) +
∞∑
n=1

∑
inconjugate
primitive p

∫
Fp

K (cosh d (x, pnx)) dx

where Fp is a fundamental domain for Gp. Then p is conjugate to
some magnification x 7→ m2x. Then Fp = {x1 ∈ R : 1 ≤ x2 ≤ m2} .
The formula follows from a direct calculation. �
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In the particular case where KH (t) is the fundamental solution of
the heat equation on H. Then KH (t) = exp (−t∆). Then

tr (exp (−t∆)) =
∞∑
n=0

exp (−tγn)

= area (M)
e−t/4

(4πt)3/2

∫ ∞
0

be−b
2/4t

sinh
(
1
2
b
)db

+
1

2

∞∑
n=1

∑
inconjugate
primitive p

` (p)

sinh
(
1
2
` (pn)

) e−t/4

(4πt)1/2
e−|`(p

n)|2/4t.
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