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1. INTRODUCTION TO THE SELBERG TRACE FORMULA

This is a talk about the paper H. P. McKean: Selberg’s Trace For-
mula as applied to a compact Riemann surface (1972). For simplicity,
assume that M is a compact Riemannian manifold. Consider classical
mechanics on M, where a free particle on M moves along geodesics. If
M has infinite fundamental group, then in each free homotopy class of
a curve on M, there is a unique closed geodesic. If M is a Riemann
surface of genus > 1, we can look at the length of the (unique) closed
shortest geodesic in each equivalence class from 7 (M).

Next, consider quantum mechanics. Eigenvalues of the Laplacian on
the manifold

0=m <7< <...T+oo

7, is the energy of the j™ “pure” state. We expect that there is a

relation between the classical data (lengths of closed geodesics) and
quantum data (eigenvalues). The Selberg trace formula provides this
link. So there should be a “Selberg trace formula” on any manifold.
There are many examples of this. When the manifold has a lot of
symmetry (eg hyperbolic space mod a subgroup of PSL (2,R)), there
is an example.

Starting with the 19th century: the Poisson summation formula.
Let M = C L be the 2-torus, where L is an integral lattice. We let
L be the integral span of 1 and a + ¢b. Consider the Laplacian on this
surface. Then the Laplacian will be

0? 0?
A=_— [ — _
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acting on L-periodic functions. The eigenfunctions are
f(x) =exp (2miw - 1),

where w’ is an element of the dual lattice: that is w’-w € Z for allw € L.

. . 2 . .
The corresponding eigenvalues are 472 |w’|*. The Poisson summation
1
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formula relates the theta functions of L and its dual lattice L', as
follows:

2
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|w| length of closed geodesics
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The theta function in physics language is the partition function.
Also, this is the trace of the heat kernel:

tr (exp (— Z exp (

where exp (—tA) is the heat operator. The heat equation is

9,
ot

tr (exp (—tA)) = / K (t,z,x) dx
M
In the case of the torus,

KT (t,x,z) = ZKRQt’y ,T) .

yeL

—K = —-AK; K0,z,9)=6(x—vy),

On the circle,
K% (t,z,z) = ZKR (t,x 4+ n,x).
nez

To prove the Poisson summation formula, one expands the left side
in terms of the Fourier series and uses the known heat kernel for R :

KR (t,z,y) = Fexp( |;§’|)
The knowledge of the spectrum of the Laplacian determines |a| and
b|, as follows. For our torus with the lattice above, area(M) = |b].

After this, subtract terms from both sides the parts corresponding to

geodesics with length 1,2,3, ... The next geodesic will be 1/|a|* + [b]*,

so we can find |a|. So we can determine the torus up to reflection.
Next, we generalize to a hyperbolic Riemann surface M with genus
g > 2. Then the spectrum o (M) of the Laplacian is

02’71<’}/2§’73§...—>—|—OO.
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The Selberg trace formula relates the trace
tr (exp (—tA)) = > exp (—t);)
j=1

of the heat kernel to the kind of dual theta function. The role of the
lattice L is taken over by the conjugacy classes @ of G = 71 (M),
identified with a subgroup of SL (2,R). Then

M =SL(2,R) /G.

The numbers |w| are replaced by

1(Q) =2cosh™ (%tr (Q)) .

Here, @ is a free deformation class of closed paths on M, and [ (Q)
is the length of the shortest path in this class. There is a famous
(noncompact) cases that we will not cover

M = SL(2,R) /SL(2,7)

or

M =SL(2,R) T
where I is an algebraic subgroup of SL (2,7Z). Audrey Terras and Serge

Lang have good books on the subject. Also there is a survey paper by
Werner Miiller.

2. RIEMANN SURFACE FORMULA

Let M be a compact Riemann surface of genus ¢ > 2. By the
Riemann uniformization theorem, the universal cover is the upper half
plane H.

H = {(z1 +iz2) : z2 > 0}
This is also called the Poincaré hyperbolic plane, with metric
e da? + da3
a3
(You can also realize this as the Poincare disk.) The fundamental
group 71 (M) acts by deck transformations on H that are isometries

a b

Z ij:s, such that det ( . d ) =1 with a,b,¢,d € R. So SL(2,R)

is the group of isometries of H. Thus, we can identify m (M) with a
subgroup G of SL(2,R). The G has a fundamental region in H that is
a hyperbolic polygon with 4¢ sides.
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What must be true about GG in order that H /G is a compact Rie-
mann surface? Note that SL(2,R) = KAN, where K = SO (2) =

{ ( C;Sn<g> —C(s)lsne@ ) } is the stabilizer of i. The group A is the group

. : a 0
of magnifications {( 0 a-!
horizontal translations, N = {( Lo ) b e R}.

) ta > 0}. The group N is the group of

01

Proposition 1. For any g € SL(2,R), g is conjugate to
e rotation iff tr (g) < 2 (elliptic)
e magnification iff tr (g) > 2 (hyperbolic)
e translation iff tr (g) = 2 (parabolic)

The hyperbolic distance d (x,y) satisfies
d(xz,gz) = d(kzx, kgx)
= d (kx, (kgk’l) kx) ,
for all k, g in SL(2,R). So
iglf d(xz,gz) = iI;fd (kz, (kgk™") kz)
= iI;f d (IL‘, (k:gk_l) IL‘)

Think of elements of G as homotopy classes of closed paths on M
with fixed base point.

Free homotopy classes of M are identified with the conjugacy class
Q= {kgk™ : k € G}.

Every nontrivial element of GG is conjugate to a hyperbolic element.
(Proof: if an element g of G is not the identity, then there is a geodesic
of minimum length connecting some z to gz, but if g is parabolic or
elliptic, this length can go to zero.) Thus it is conjugate to a magnifi-
cation, and thus ¢ (¢") = |n| £ (g) is true, where ¢ (g) = inf, d (z, gx) is
the length of the shortest path.

For every g € GG that is nontrivial, it can be expressed in a unique
way as the positive power of a primitive element p € G (primitive: it
is not the power of any other element of G).

Proposition 2. As p runs through the inconjugate primitive elements
in G and n through the positive integers, the conjugacy class

Q= {kp"k_l ke G/Gp)
runs through the conjugacy classes of G. Here, G), is the centralizer of

p. Moreover, for fized p, n, elements kpk™ run once through Q as k
runs through G /G, .
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Note that d(z,y) = cosh™ (1 + M) , L(p™) = n|logm?| where

2z2y2
m 0
p 0 m™* )

Theorem 3. (Selberg trace formula) Start with a function K : R — R
that decays sufficiently rapidly as x — oo. Then Ky (z,y) = K (coshd (x,y))
s a function on H x H. It induces a symmetric kernel on M x M wvia

Ky (z,y) =) Ky (,9y) .-

geG

Then

for all h € G. Then, with dx = d”}# = hyperbolic volume element
2
trKy - = / Ky (z,2) do
M

= area(M)K(l)—i—f: Z ¢ (p) /oo K (b) db
n=1 inconjugate \/COShE (pn) —1 cosh £(p™) b — cosh? (p")

primitive p

Proof. Let F' be a fundamental domain of M. We have
trKy = / Ky (z,z) do
F

= Z K (coshd (z, gz)) dx

geG M

— area(M)K(l)—f—Z Z Z /FK(Coshd(x,kp”]{;—lx)) dx

n=1 inconjugate keG /G,
primitive p

= area(M)K(l)—i—Z Z Z AK(coshd(x,p”x)) dx

n=1 inconjugate keG Gy
primitive p

[e.e]
= area(M)K (1) + Z Z K (coshd (z,p"z)) dx
n=1 inc_onjl}gate Fp
primitive p
where F), is a fundamental domain for G,. Then p is conjugate to
some magnification z +— m?z. Then F, = {z; € R:1 <1z <m?}.
The formula follows from a direct calculation. ]
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In the particular case where Ky (t) is the fundamental solution of
the heat equation on H. Then Ky () = exp (—tA). Then

tr (exp (—tA)) = Z exp (—tyy,)

—t/4 00 —b2 /4t
= area (M) ¢ 3/2/ ?e —-db
(ant) Jo Sin (30)

i T t(p) e e
sinh (3¢ (p")) (4t)"/?

n=1 inconjugate
primitive p

+

N =



	1. Introduction to the Selberg Trace Formula
	2. Riemann surface formula

