SHEAF THEORY

1. Presheaves

Definition 1.1. A presheaf on a space \(X \) (any top. space) is a contravariant functor from open sets on \(X \) to a category (usually \(\text{Ab} = \) category of abelian groups).

That is, given \(U \) open \(\subseteq X \), you have an abelian group \(A(U) \), and if \(V \subseteq U \), then you have a restriction map \(r_{V,U}: A(U) \to A(V) \). Then \(r_{U,U} = 1 \), \(r_{W,V}r_{V,U} = r_{W,U} \) etc.

Example 1.2. Let \(A(U) = G \), a fixed abelian group \(\forall U \), \(r_{U,V} = 1 \) (constant presheaf)

Example 1.3. Let \(A(U) = G \), a fixed abelian group \(\forall U \), \(r_{U,V} = 0 \) (Texas \(\text{A&}M \) presheaf)

Example 1.4. Let \(A(X) = G \), \(A(U) = 0 \) \(\forall \) proper \(U \subseteq X \) (TCC presheaf)

Example 1.5. Skyscraper presheaf: \(x \in X \); \(A(U) = \begin{cases} 0 & \text{if } x \notin U \\ Z & \text{if } x \in U \end{cases} \)

Example 1.6. \(X = M \), \(A(U) = \{\text{real analytic fcns on } U\} \)

Example 1.7. adapt above using words like continuous, holomorphic, polynomial, differential forms, \(k \)th cohomology group \(H^k(U) \),

Example 1.8. or \(H^\infty_k(U) \) (closed support homology). For example, \(H^\infty_k(\text{open disk in } \mathbb{R}^2) = \begin{cases} \mathbb{Z} & k = 2 \\ 0 & \text{otherwise} \end{cases} \)

restriction maps: cut things off

Note: Poincare duality for closed support: \(H^*(M) = H^{\infty,n-*}(M) \) (\(M \) possibly noncompact)

Poincare duality for compact support: \(H^*_c(M) = H^{n-*}_c(M) \)

Example 1.9. Orientation presheaf: on an \(n \)-manifold, \(H^\infty_n(U) \)

2. Sheaves

Definition 2.1. A sheaf \(\mathcal{A} \) is a space together with a projection \(\pi : \mathcal{A} \to X \) such that

1. \(\mathcal{A}_x := \pi^{-1}(x) \) is an abelian group (or could generalize to other categories) \(\forall x \in X \) (stalk at \(x \))

2. \(\pi \) is a local homeomorphism (\(\Rightarrow \pi^{-1}(x) \) is discrete)

3. group operations are continuous, ie \(\{(a,b) \in \mathcal{A} \times \mathcal{A} \mid \pi(a) = \pi(b)\} \to \mathcal{A} \) given by \((a,b) \mapsto ab^{-1} \) is continuous.

Note: often not Hausdorff. (eg line with two origins (which is a skyscraper sheaf), or over \(\mathbb{R} \) you could have \(\mathbb{Z} \) above all nonpositive \(x \) and the 0 group for positive \(x \)).

Example 2.2. Constant sheaf: \(X \times \mathbb{Z} \).

Example 2.3. Twisted constant sheaf: \(S^1 \times_T \mathbb{Z} \) (\(1 \mapsto -1 \) upon identification on ends of \([0,2\pi]\)).
Example 2.4. \(X = \mathbb{R}, \mathcal{A}_x = \mathbb{Z} \) if \(x \in (0, 1) \), \(= \{0\} \) otherwise.

Example 2.5. \(X = \mathbb{R}, \mathcal{A}_x = \mathbb{Z} \) if \(x \in [0, 1] \), \(= \{0\} \) otherwise. Note that total space must have non-Hausdorff topology (above \(x = 0, x = 1 \)).

Example 2.6. Skyscraper at origin: \(X = \mathbb{R}, \mathcal{A}_x = \mathbb{Z} \) if \(x = 0 \), \(= \{0\} \) otherwise. Note that total space must have non-Hausdorff topology (above \(x = 0 \), \(x = 1 \)).

Example 2.7. Everywhere skyscraper: \(\prod_{x \in \mathbb{R}} \mathbb{Z}_x \). Use your imagination. Extremely non-Hausdorff — note stalks all the same as in \(\mathbb{R} \times \mathbb{Z} \).

Example 2.8. Sheaf of germs of smooth (pick your favorite adjective) functions. Stalk at \(x = \{\text{germs of functions at } x\} \).

Note: by definition, germ of \(f \) at \(x = \lim_{\to x \in U} (f|_U) \) germ of \(f(x) = 0 \) at \(x = 0 \) is not the same as the germ of \(f(x) = x \) at \(x = 0 \), but it does have the same germ as that of \(f(x) = \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ x - 1 & \text{if } x > 1 \\ x + 1 & \text{if } x < 1 \end{cases} \).

3. Sheafification

There exists a functor \(\Gamma: \{\text{Sheaves} \} \rightarrow \{\text{Presheaves} \} \) (take sections).

\[A \mapsto A(U) = \Gamma(U; A) \]

The functor is not onto.

The functor \(sh: \{\text{Presheaves} \} \rightarrow \{\text{Sheaves} \} \) is Sheafification

This functor projects to conjunctive mono-presheaves (category equivalence).

\(\Gamma(sh(A)) \neq A \), but \(sh(\Gamma(A)) = A \), however \(\Gamma(sh(A)) = A \) if \(A \) is conjunctive, mono.

Suppose we have a sheaf \(A \), take \(s \in \Gamma(X, A) \). Suppose that \(s_x = 0 \ \forall x \). Then \(s = 0 \). However this is not true for every presheaf. Recall the TCC presheaf (\(A(X) = G, A(U) = 0 \) for proper \(U \subseteq X \)).

Definition 3.1. (Sheafification) Given a presheaf \(A \), the stalk over \(x \) is \(\pi^{-1}(x) = \lim_{x \in U} A(U) \), with the following topology. Given any \(s_x \in \pi^{-1}(x) \), \(s_x \) is represented by some \(s \in A(V) \), where \(x \in V \). A basis element is the collection of images of \(s \) under the direct limit in other \(y \in V \) close to \(x \).

Definition 3.2. \(A \) is a mono presheaf if for any element \(s \in A(X) \) and any \(x \in X \), \(s_x = 0 \), then \(s = 0 \in A(X) \).

Definition 3.3. \(A \) is conjunctive if given open sets \(U_j \) and sections \(s_j \in A(U_j) \) such that \(s_j|_{U_i \cap U_j} = s_i|_{U_i \cap U_j} \), then there exists \(s \in A(\bigcup U_i) \) such that \(s|_{U_i} = s_i \).

4. Sheaf Cohomology

4.1. Derived functors. Tor (related to tensor product \(\otimes B \))

\[\text{Ext} \ (\text{related to } Hom(\cdot, B)) \]

Let \(A \) and \(B \) be abelian groups. Then consider \(\otimes B \) as a functor.
Consider an exact sequence of groups (called a free resolution - all groups are free except A)

$$
... \rightarrow F_2 \rightarrow F_1 \rightarrow F_0 \rightarrow A \rightarrow 0
$$

Let $$
... \rightarrow F_2 \rightarrow F_1 \rightarrow F_0 \rightarrow 0 = F_*
$$

Now cut out the A: $H_0 (F_*) = A$, $H_i (F_*) = 0$ for $i > 0$.

Next, the left derived functor of $A \otimes B$ is $H_i (F_* \otimes B) = Tor_i (A, B)$. Tensor is only right exact, so you don’t get trivial torsion. Note that $H_0 (F_* \otimes B) = Tor_0 (A, B) = A \otimes B$. Note that this is independent of choice of resolution.

Example: $Tor (\mathbb{Z}_2, \mathbb{Z}_2)$:

$$
\mathbb{Z} \xrightarrow{2} \mathbb{Z} \rightarrow \mathbb{Z}_2
$$

So

$$
H_i (F_* \otimes \mathbb{Z}_2) = \begin{cases}
\mathbb{Z}_2 & i = 1, 0 \\
0 & \text{otherwise}
\end{cases}
$$

In general, $Tor (\mathbb{Z}_a, \mathbb{Z}_b) = \mathbb{Z} / \gcd (a, b)$.

You could use projective modules (direct summand of a free module) instead of free modules.

Tensor: right exact covariant, Hom: left exact contravariant

Suppose F is a left exact covariant functor from an abelian category to groups (eg $Hom (A, \cdot)$). Then the right derived functor $R^i F (A) = F (I^*)$ is defined as follows. Here I^* is an injective resolution, that is

$$
A \rightarrow I^0 \rightarrow I^1 \rightarrow ...
$$
is exact, and each I^j is injective, meaning this

$$
\begin{align*}
0 & \rightarrow A \\
\downarrow & \\
I & \rightarrow B
\end{align*}
$$

Then $H^* (I^*) = H^* (A)$, and

$$
R^i F (A) := H^i (F (I^*)).
$$

Definition 4.1. The class \mathcal{J} of objects in the category is “adapted to F” or “F acyclic” if $R^i (F (J)) = 0$ for $i > 0$, $J \in \mathcal{J}$.

For example, the sheaf of differential forms is $\Gamma (X; \cdot)$ acyclic. (Any soft, flabby, or fine sheaf works.)

Theorem 4.2. If we have a resolution J^* of A by objects in a class \mathcal{J} adapted to F, then

$$
R^i F (A) = H^i (F (I^*)) = H^i (F (J^*)).
$$

A morphism of sheaves is

$$
\begin{array}{ccc}
A & \rightarrow & B \\
\downarrow & & \downarrow \\
X & \rightarrow & Y
\end{array}
$$
such that each $f_x : A_x \rightarrow B_x$ is a homomorphism.

Given $f : A \rightarrow B$ (over X), there exists

$$
\ker f = \{ x \in A \text{ such that } f (x) = 0 \}
$$

$$
\operatorname{coker} f = \{ \operatorname{cok} \text{ of stalk} \}.$$
Notice $f : \Gamma (U; \mathcal{A}) \to \Gamma (U, \mathcal{B})$ implies
\[
cok f = \text{Sh} \left(U \to \frac{\Gamma (U; \mathcal{B})}{\text{Im} (\Gamma (U, \mathcal{A}) \to \Gamma (U, \mathcal{B}))} \right)
\]

Note $\Gamma (U; \cdot)$ is left exact.

Example 4.3. Let $X = \mathbb{R}$, let $\mathcal{A} = \mathbb{Z}_{(0,1)} = \mathbb{Z}_{\mathbb{R}}$, $f : \mathcal{A} \to \mathcal{B}$ inclusion. On \mathcal{A}, the global sections are the trivial section. We have
\[
\begin{align*}
0 & \to \mathcal{A} \to \mathcal{B} \to \text{cok } f \to 0 \\
0 & \to \Gamma (\mathbb{R}; \mathcal{A}) \to \Gamma (\mathbb{R}; \mathcal{B}) \to \Gamma (\mathbb{R}; \text{cok } f) \text{ is}
\end{align*}
\]

We define the sheaf cohomology as
\[
H^i (X; \mathcal{A}) := R^i \Gamma (X; \mathcal{A}) = H^i (\Gamma (X; I^*))
\]

Example 4.4. Let M be a manifold. Let \mathbb{R} be the constant sheaf. Resolution of sheaves (exact because exact at stalks because of Poincaré Lemma):
\[
\mathbb{R} \to \Omega^0 (M) \to \Omega^1 (M) \to ...
\]

Everything beyond the first is soft. Then
\[
H^i (M; \mathbb{R}) = H^i (\Gamma (M, \Omega^*)) = H^i_{\text{dR}} (M).
\]

Department of Mathematics, Texas Christian University, Fort Worth, Texas 76129, USA

E-mail address: g.friedman@tcu.edu