SHEAF THEORY

1. PRESHEAVES

Definition 1.1. A presheaf on a space X (any top. space) is a contravariant functor from
open sets on X to a category (usually Ab= category of abelian groups).

That is, given U open C X, you have an abelian group A (U), and if V' C U, then you
have a restriction map ryy : A(U) — A(V). Then rypy = 1, rwvrve = rwp ete.

Example 1.2. Let A(U) = G, a fized abelian group YU, ryy = 1 (constant presheaf)
Example 1.3. Let A(U) = G, a fized abelian group VU, ryy = 0 (Texas AEM presheaf)
Example 1.4. Let A(X) =G, A(U) =0 Vproper U C X (TCC presheaf)

0 ifegU
G ifrelU

Example 1.6. X = M, A(U) = {real analytic fecns on U}

Example 1.5. Skyscraper presheaf: © € X; A(U) = {

Example 1.7. adapt above using words like continuous, holomorphic, polynomial, differen-
tial forms, kth cohomology group H* (U),

Example 1.8. or H (U) (closed support homology). For example, H® (open disk in R?) =

7 k=2
0 otherwise
restriction maps: cut things off

Note: Poincare duality for closed support: H* (M) = H>°, (M) (M possibly noncompact)
Poincare duality for compact support: H} (M) = HS_, (M)

Example 1.9. Orientation presheaf: on an n-manifold, H® (U)

2. SHEAVES

Definition 2.1. A sheaf A is a space together with a projection w: A — X such that

(1) A, := 7= (x) is an abelian group (or could generalize to other categories) Vx € X
(stalk at x)

(2) 7 is a local homeomorphism (= 7w~ (x) is discrete)

(3) group operations are continuous, ie {(a,b) € Ax A| mw(a) =7 (b)} — A given by
(a,b) — ab™! is continuous.

Note : often not Hausdorff. (eg line with two origins (which is a skyscraper sheaf), or over
R you could have Z above all nonpositive = and the 0 group for positive x).

Example 2.2. Constant sheaf: X x Z.

Example 2.3. Twisted constant sheaf: S' x1 Z (1~ —1 upon identification on ends of
[0,27].)
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2 GREG
Example 2.4. X =R, A, =Z if x € (0,1), = {0} otherwise.

Example 2.5. X =R, A, =7 if x € [0,1], = {0} otherwise. Note that total space must
have nonHausdorff topology (above x =0, x =1).

Example 2.6. Skyscraper at origin: X =R, A, =Z if x =0, = {0} otherwise.

Example 2.7. Everywhere skyscraper: [[ Z.. Use your imagination. Extremely nonHaus-
z€eR
dorff — note stalks all the same as in R X Z.

Example 2.8. Sheaf of germs of smooth (pick your favorite adjective) functions.
Stalk at © = {germs of functions at x}.

Note : by definition,

germ of f at & = lim (f)

zeU
germ of f(x) =0 at x = 0 is not the same as the germ of f(x) =z at x =0, but it does
0 if —1<z<1
have the same germ as that of f(x) =< v —1 if x>1

r+1 if v<1

3. SHEAFIFICATION

There exists a functor I':{Sheaves } — {Presheaves} (take sections).

A A(U) =T (U; A)

The functor is not onto.

The functor sh:{Presheaves} — {Sheaves } is Sheafification

This functor projects to conjunctive mono-presheaves (category equivalence).

' (sh(A)) # A, but sh(I'(A)) = A, however I" (sh (A)) = A if A is conjunctive, mono.

Suppose we have a sheaf A, take s € I' (X,.A) .Suppose that s, = 0 Vz. Then s = 0.
However this is not true for every presheaf. Recall the TCC presheaf ( A(X) =G, A(U) =0
for proper U C X).

Definition 3.1. (Sheafification) Given a presheaf A, the stalk over x is 7" (z) = lim A (U),

zeU
with the following topology. Given any s, € 7' (), s, is represented by some s € A(V),

where x € V. A basis element is the collection of images of s under the direct limit in other
y €V close to x.

Definition 3.2. A is a mono presheaf if for any element s € A(X) and any z € X, s, =0,
then s =0 € A(X).

Definition 3.3. A is conjunctive if given open sets U; and sections s; € A(U;) such that
Silunu, = 5i|UimUj7 then there exists s € A(UJU;) such that s|, = s;.

4. SHEAF COHOMOLOGY

4.1. Derived functors. Tor (related to tensor product ® B)
Ext (related to Hom (-, B))
Let A and B be abelian groups. Then consider ® B as a functor.
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Consider an exact sequence of groups (called a free resolution - all groups are free except
4)
— - F —-F—A—0
Let... — Fh,— I —F—0=F,

Now cut out the A: Hy (F,) = A, H; (F,) =0 for ¢ > 0.

Next, the left derived functor of A ® B is H; (F, ® B) = Tor; (A, B). Tensor is only right
exact, so you don’t get trivial torsion. Note that Hy (F, ® B) = Torg (A, B) = A® B. Note
that this is independent of choice of resolution.

Example: Tor (Zs, Zs) :

Z37 -7,
So
|z, i=1,0
Hi(F. ®Z,) = { 0  otherwise

In general, Tor (Z4,Zy) = 7./ ged (a, b).

You could use projective modules (direct summand of a free module) instead of free mod-
ules.

Tensor: right exact covariant, Hom: left exact contravariant

Suppose F' is a left exact covariant functor from an abelian category to groups (eg
Hom (A,-)). Then the right derived functor RF' (A) = F (I*) is defined as follows. Here I*

is an injective resolution , that is
A—-T1" -1 — .
is exact, and each I’ is injective, meaning this
0O - A — B
L)
I
Then H* (I*) = H* (A), and 4 '
R'F(A):=H'(F(I).
Definition 4.1. The class J of objects in the category is “adapted to F” or “F acyclic” if
R (F(J))=0 fori>0,J€J.

For example, the sheaf of differential forms is I' (X;-) acyclic. (Any soft, flabby, or fine
sheaf works.)

Theorem 4.2. If we have a resolution J* of A by objects in a class J adapted to F, then
R'F(A)=H' (F(I)=H (F(J).

A morphism of sheaves is
H

f: A B
A N\ 7
X
such that each f, : A, — B, is a homomorphism.

Given f: A — B (over X ), there exists
ker f = {z € Asuch that f(z) =0}
coker f = {cok of stalk}
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Notice f: I'(U; A) — I' (U, B) implies

COkf:Sh(U_)Im(F(
Note I' (U;-) is left exact.

Example 4.3. Let X =R, let A = Z,y, = Zr, f : A — B inclusion. On A, the global
sections are the trivial section. We have

0 - A—-B—cok f—0
0 - I'RjA) =T (R;B) = I'(R;cok f) is
0 - 0=Z—-ZZ

r'(U; B)
UA) — T (U, B)))

We define the sheaf cohomology as
H' (X;A) := RT (X;A) = H (T (X; "))

Example 4.4. Let M be a manifold. Let R be the constant sheaf. Resolution of sheaves
(exact because exact at stalks because of Poincaré Lemma,):

R — QY (M) — Q' (M) — ...
Everything beyond the first is soft. Then

H' (M;R) = H'(['(M,Q"))

- HéR (M ) :
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