SHEAF THEORY

1. Presheaves

Definition 1.1. A presheaf on a space X (any top. space) is a contravariant functor from open sets on X to a category (usually Ab = category of abelian groups).

That is, given U open $\subseteq X$, you have an abelian group A(U), and if $V \subseteq U$, then you have a restriction map $r_{V,U} : A(U) \to A(V)$. Then $r_{U,U} = \mathbf{1}$, $r_{W,V}r_{V,U} = r_{W,U}$ etc.

Example 1.2. Let A(U) = G, a fixed abelian group $\forall U, r_{U,V} = 1$ (constant presheaf)

Example 1.3. Let A(U) = G, a fixed abelian group $\forall U, r_{U,V} = \mathbf{0}$ (Texas A & M presheaf)

Example 1.4. Let A(X) = G, A(U) = 0 \forall proper $U \subseteq X$ (TCC presheaf)

Example 1.5. Skyscraper presheaf: $x \in X$; $A(U) = \begin{cases} 0 & \text{if } x \notin U \\ G & \text{if } x \in U \end{cases}$

Example 1.6. X = M, $A(U) = \{real \ analytic \ fcns \ on \ U\}$

Example 1.7. adapt above using words like continuous, holomorphic, polynomial, differential forms, kth cohomology group $H^{k}(U)$,

Example 1.8. or $H_k^{\infty}(U)$ (closed support homology). For example, H_k^{∞} (open disk in \mathbb{R}^2) = $\int \mathbb{Z} \quad k = 2$

 $0 \quad otherwise$

restriction maps: cut things off

Note: Poincare duality for closed support: $H^*(M) = H^{\infty}_{n-*}(M)$ (*M* possibly noncompact) Poincare duality for compact support: $H^*_c(M) = H^c_{n-*}(M)$

Example 1.9. Orientation presheaf: on an n-manifold, $H_{n}^{\infty}\left(U\right)$

2. Sheaves

Definition 2.1. A sheaf \mathcal{A} is a space together with a projection $\pi : \mathcal{A} \to X$ such that

- (1) $\mathcal{A}_x := \pi^{-1}(x)$ is an abelian group (or could generalize to other categories) $\forall x \in X$ (stalk at x)
- (2) π is a local homeomorphism ($\Rightarrow \pi^{-1}(x)$ is discrete)
- (3) group operations are continuous, ie $\{(a,b) \in \mathcal{A} \times \mathcal{A} \mid \pi(a) = \pi(b)\} \to \mathcal{A}$ given by $(a,b) \mapsto ab^{-1}$ is continuous.

Note : often not Hausdorff. (eg line with two origins (which is a skyscraper sheaf), or over \mathbb{R} you could have \mathbb{Z} above all nonpositive x and the 0 group for positive x).

Example 2.2. Constant sheaf: $X \times \mathbb{Z}$.

Example 2.3. Twisted constant sheaf: $S^1 \times_T \mathbb{Z}$ ($1 \mapsto -1$ upon identification on ends of $[0, 2\pi]$.)

GREG

Example 2.4. $X = \mathbb{R}$, $\mathcal{A}_x = \mathbb{Z}$ if $x \in (0, 1)$, = $\{0\}$ otherwise.

Example 2.5. $X = \mathbb{R}$, $A_x = \mathbb{Z}$ if $x \in [0, 1]$, = $\{0\}$ otherwise. Note that total space must have nonHausdorff topology (above x = 0, x = 1).

Example 2.6. Skyscraper at origin: $X = \mathbb{R}$, $A_x = \mathbb{Z}$ if $x = 0, = \{0\}$ otherwise.

Example 2.7. Everywhere skyscraper: $\prod_{x \in \mathbb{R}} \mathbb{Z}_x$. Use your imagination. Extremely nonHausdorff — note stalks all the same as in $\mathbb{R} \times \mathbb{Z}$.

Example 2.8. Sheaf of germs of smooth (pick your favorite adjective) functions. Stalk at $x = \{germs \text{ of functions at } x\}$.

Note : by definition, germ of f at $x = \lim_{\substack{x \in U \\ x \in U}} (f|_U)$ germ of f(x) = 0 at x = 0 is not the same as the germ of f(x) = x at x = 0, but it does have the same germ as that of $f(x) = \begin{cases} 0 & \text{if } -1 \le x \le 1 \\ x - 1 & \text{if } x > 1 \\ x + 1 & \text{if } x < 1 \end{cases}$

3. Sheafification

There exists a functor Γ :{Sheaves} \rightarrow {Presheaves} (take sections). $\mathcal{A} \mapsto \mathcal{A}(U) = \Gamma(U; \mathcal{A})$ The functor is not onto. The functor sh:{Presheaves} \rightarrow {Sheaves } is *Sheafification*

This functor projects to conjunctive mono-presheaves (category equivalence).

 $\Gamma(sh(A)) \neq A$, but $sh(\Gamma(A)) = A$, however $\Gamma(sh(A)) = A$ if A is conjunctive, mono.

Suppose we have a sheaf \mathcal{A} , take $s \in \Gamma(X, \mathcal{A})$. Suppose that $s_x = 0 \ \forall x$. Then s = 0. However this is not true for every presheaf. Recall the TCC presheaf (A(X) = G, A(U) = 0 for proper $U \subseteq X$).

Definition 3.1. (Sheafification) Given a presheaf A, the stalk over x is $\pi^{-1}(x) = \lim_{\substack{\to \\ x \in U}} A(U)$,

with the following topology. Given any $s_x \in \pi^{-1}(x)$, s_x is represented by some $s \in A(V)$, where $x \in V$. A basis element is the collection of images of s under the direct limit in other $y \in V$ close to x.

Definition 3.2. A is a mono presheaf if for any element $s \in A(X)$ and any $x \in X$, $s_x = 0$, then $s = 0 \in A(X)$.

Definition 3.3. A is conjunctive if given open sets U_j and sections $s_j \in A(U_j)$ such that $s_j|_{U_i \cap U_j} = s_i|_{U_i \cap U_j}$, then there exists $s \in A(\bigcup U_i)$ such that $s|_{U_i} = s_i$.

4. Sheaf Cohomology

4.1. **Derived functors.** Tor (related to tensor product $\otimes B$)

Ext (related to $Hom(\cdot, B)$)

Let A and B be abelian groups. Then consider $\otimes B$ as a functor.

GREG

Consider an exact sequence of groups (called a free resolution - all groups are free except A)

$$\dots \quad \to \quad F_2 \to F_1 \to F_0 \to A \to 0$$

Let $\dots \quad \to \quad F_2 \to F_1 \to F_0 \to 0 = F_*$

Now cut out the A: $H_0(F_*) = A$, $H_i(F_*) = 0$ for i > 0.

Next, the left derived functor of $A \otimes B$ is $H_i(F_* \otimes B) = Tor_i(A, B)$. Tensor is only right exact, so you don't get trivial torsion. Note that $H_0(F_* \otimes B) = Tor_0(A, B) = A \otimes B$. Note that this is independent of choice of resolution.

Example: $Tor(\mathbb{Z}_2,\mathbb{Z}_2)$:

 $\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \to \mathbb{Z}_2$

So

$$H_i(F_* \otimes \mathbb{Z}_2) = \begin{cases} \mathbb{Z}_2 & i = 1, 0\\ 0 & \text{otherwise} \end{cases}$$

In general, $Tor(\mathbb{Z}_a, \mathbb{Z}_b) = \mathbb{Z} / \gcd(a, b).$

You could use projective modules (direct summand of a free module) instead of free modules.

Tensor: right exact covariant, Hom: left exact contravariant

Suppose F is a left exact covariant functor from an abelian category to groups (eg $Hom(A, \cdot)$). Then the right derived functor $RF(A) = F(I^*)$ is defined as follows. Here I^* is an injective resolution, that is

$$A \to I^0 \to I^1 \to \dots$$

is exact, and each I^{j} is injective, meaning this

Then $H^{*}(I^{*}) = H^{*}(A)$, and

$$R^{i}F(A) := H^{i}(F(I^{*})).$$

Definition 4.1. The class \mathcal{J} of objects in the category is "adapted to F" or "F acyclic" if $R^{i}(F(J)) = 0$ for $i > 0, J \in \mathcal{J}$.

For example, the sheaf of differential forms is $\Gamma(X; \cdot)$ acyclic. (Any soft, flabby, or fine sheaf works.)

Theorem 4.2. If we have a resolution J^* of A by objects in a class \mathcal{J} adapted to F, then $R^iF(A) = H^i(F(I^*)) = H^i(F(J^*)).$

A morphism of sheaves is

$$\begin{array}{ccccccccc} f: & \mathcal{A} & \to & \mathcal{B} \\ \mathcal{A} & \searrow & & \swarrow \\ & & & X \end{array}$$

such that each $f_x : \mathcal{A}_x \to \mathcal{B}_x$ is a homomorphism. Given $f : \mathcal{A} \to \mathcal{B}$ (over X), there exists

$$\ker f = \{x \in \mathcal{A} \text{ such that } f(x) = 0\}$$

$$\cos \ker f = \{\operatorname{cok of stalk}\}$$

GREG

Notice $f: \Gamma(U; \mathcal{A}) \to \Gamma(U, \mathcal{B})$ implies

$$cok \ f = Sh\left(U \to \frac{\Gamma\left(U; \mathcal{B}\right)}{\operatorname{Im}\left(\Gamma\left(U, \mathcal{A}\right) \to \Gamma\left(U, \mathcal{B}\right)\right)}\right)$$

Note $\Gamma(U; \cdot)$ is left exact.

Example 4.3. Let $X = \mathbb{R}$, let $\mathcal{A} = \mathbb{Z}_{(0,1)}$, $= \mathbb{Z}_{\mathbb{R}}$, $f : \mathcal{A} \to \mathcal{B}$ inclusion. On \mathcal{A} , the global sections are the trivial section. We have

$$\begin{array}{rcl} 0 & \to & \mathcal{A} \to \mathcal{B} \to cok \ f \to 0 \\ 0 & \to & \Gamma\left(\mathbb{R}; \mathcal{A}\right) \to \Gamma\left(\mathbb{R}; \mathcal{B}\right) \to \Gamma\left(\mathbb{R}; cok \ f\right) \ is \\ 0 & \to & 0 \to \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z} \end{array}$$

We define the sheaf cohomology as

$$H^{i}(X;\mathcal{A}) := R^{i}\Gamma(X;\mathcal{A}) = H^{i}(\Gamma(X;I^{*}))$$

Example 4.4. Let M be a manifold. Let \mathbb{R} be the constant sheaf. Resolution of sheaves (exact because exact at stalks because of Poincaré Lemma):

$$\mathbb{R} \to \Omega^0(M) \to \Omega^1(M) \to \dots$$

Everything beyond the first is soft. Then

$$H^{i}(M;\mathbb{R}) = H^{i}(\Gamma(M,\Omega^{*}))$$
$$= H^{i}_{dR}(M).$$

DEPARTMENT OF MATHEMATICS, TEXAS CHRISTIAN UNIVERSITY, FORT WORTH, TEXAS 76129, USA *E-mail address*: g.friedman@tcu.edu