
DIFFERENTIABLE STRUCTURES

1. Classification of Manifolds

1.1. Geometric topology. The goals of this topic are

(1) Classify all spaces - ludicrously impossible.
(2) Classify manifolds - only provably impossible (because any finitely presented group

is the fundamental group of a 4-manifold, and finitely presented groups are not able
to be classified).

(3) Classify manifolds with a given homotopy type (sort of worked out in 1960’s by Wall
and Browder if π1 = 0. There is something called the Browder-Novikov-Sullivan-Wall
surgery (structure) sequence:

→ L (π1 (X))→ S0 (X)→ [X,G�O]

LHS=algebra, RHS=homotopy theory, S0 (X) is the set of smooth manifolds h.e. to
X up to some equivalence relation.

Classify means either

(1) up to homeomorphism
(2) up to PL homeomorphism
(3) up to diffeomorphism

A manifold is smooth iff the tangent bundle is smooth. These are classified by the orthog-
onal group O. There are analogues of this for the other types (T OP , PL). Given a space
X, then homotopy classes of maps

[X, T OP�PL]

determine if X is PL-izable. It turns out T OP�PL = a K (Z2, 3). It is a harder question
to look at if X has a smooth structure.

1.2. Classifying homotopy spheres. X is a homotopy sphere if it is a topological manifold
that is h.e. to a sphere. It turns out that if π1 (X) = 0 and H∗ (X) = H∗ (Sn), then it is a
homotopy sphere. The Poincare Conjecture is that every homotopy n-sphere is Sn. We can
ask this in several categories : Diff, PL, Top:

In dimensions 0, 1, all is true. In dimension 2, the Top category is taken care of by the
classification of surfaces. It turns out that every topological surface has a unique differen-
tiable and PL structure (due to Rado). In dimension 3, Perelman proved that the answer
is yes in the Diff category, which implies (Moise) that the same is true in the PL and Top
categories. In dimension 4, the Top version is due to Freedman. The PL and Diff categories
are unsolved in dimension 4. For n > 4, Smale proved that the P.C. is true in the Top and
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PL cases, and exotic structures exist on Sn, so the smooth P.C. is false in general. There are

1 diff structures on S5

1 diff structures on S6

28 diff structures on S7

2 diff structures on S8

8 diff structures on S9

6 diff structures on S10

992 diff structures on S11

1 diff structures on S12

3 diff structures on S13

2 diff structures on S14

16256 diff structures on S15

etc.

What does it mean to have different differentiable structures? Let φi : Vi ⊂ Rn → Ui ⊂M
be the charts, and we require the transition functions φ−1

j φi to be smooth (differentiable).

Example of a different differentiable structure on R2:
Map R2 to R2 by (x, y) 7→ (x, y + sgn (y) |x|), using the pullback structure. But note that

this smooth manifold is actually diffeomorphic to R2.

2. Milnor’s proof that there exist exotic spheres

Let M be a smooth, orientable, closed 7-manifold such that H∗ (M) ∼= H∗ (S7). We need
an invariant to tell differentiable structures apart. The point is to look at tangent bundles
that are not isomorphic.

Work of Thom shows that every M = ∂B for some smooth B, smoothly compatible with
M . Let µ be the generator of H7 (M), and let ν be the generator of H8 (B,M), such that
∂ν = µ. Note that H4 (B) ∼= H4 (B,M) and H4 (B) ∼= H4 (B,M) by the long exact sequence.
Note that H4 (B) and H4 (B,M) are Poincare dual, and in fact there is a quadratic form on
H4 (B,M) :

α, β → 〈ν, α ∪ β〉
Let τ (B) be the signature of this form.

Let p1 ∈ H4 (B8) be the first Pontryagin class (second Chern class of complexification of
tangent bundle) of TB. Let

q (B) =
〈
ν, p2

1

〉
.

Definition: Let λ (M) be the smooth invariant (now called Milnor invariant) defined as

λ (M) = 2q (B)− τ (B) mod7.

Theorem 2.1. λ (M) does not depend on the choice of B.

Corollary 2.2. If λ (M) 6= 0mod7, then M � S7.

Suppose ∂B1 = ∂B2 = M. Let C be the double; C = B1 ∪M (−B2). We have ν = ν1 − ν2.
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Theorem 2.3. (Hirzebruch Signature Theorem)

τ (C) =

〈
ν,

1

45

(
7p2 (C)− p2

1 (C)
)〉

.

This implies 45τ (C) + q (C) = 7 〈ν, p2 (C)〉 ≡ 0mod7, which implies

2q (C)− τ (C) ≡ 0mod7.

Lemma 2.4. τ (C) = τ (B1)− τ (B2), q (C) = q (B1)− q (B2).

This is Novikov additivity: If (M4m
1 , ∂M1). There is a nondegenerate pairing over the

rationals:

Im (H2m (M)→ H2m (M,∂M)) .

Let σ1 be the signature on Im :

σ (M) = σ (M1) + σ (M2) .

Proof of Lemma: We have the commutative diagram, in which everything splits in the
obvious way:

H4 (B1,M)⊕H4 (B2,M) ← H4 (C,M)
↓ ↓

H4 (B1)⊕H4 (B2) ← H4 (C)

Now the proof of the Theorem above is complete.
Now we have an invariant. We now need some 7 manifolds. Look at unit sphere bundles

of oriented 4-d vector bundles over S4. It is sufficient to look at the action of SO (4) on the
equator. In fact, {

R4 bundles over S4
} ∼= π3 (SO (4)) ∼= Z⊕ Z

The map going the other way is: a pair of integers (h, j) maps to [fhj], where

fhj : S3 → SO (4)

fhj (u) v = uhvuj

for v ∈ R4 = H. (quaternion multiplication) Let ξhj be the corresponding vector bundle,
and let Bhj be the ball bundle, and let Ehj be the corresponding sphere bundle. Our goal is
to compute p1 (ξhj) ∈ H4 (S4) = Z and e (ξhj) ∈ H4 (S4) = Z.

Lemma 2.5. p1 and e are linear in h and j.

Proof. Look at the picture. True for any characteristic class. �

Claim 2.6. p1 is antisymmetric in h and j, e is symmetric in h, j.

Proof. If F → S4 is a vector bundle, then let F denote the bundle with reversed orientation.
p1 (ξh,j) = p1

(
ξh,j

)
since this is found by tensoring with C. However, e (ξh,j) = −e

(
ξh,j

)
.

But what is ξh,j as a ξx,y? On S3 = unit quaternions in the fiber, reversing orientation can
be achieved by g (v) = v−1. Next, we are trying to glue D4 × R4 ∪D4 × R4 on the equator.

so our new gluing function restricted to S4 is

fhj (u) v =
(
uhv−1uj

)−1
= u−jvu−h = f−j,−h (u) v,

So ξh,j = ξ−j,−h.
So p1 (ξ−j,−h) = p1 (ξh,j), e (ξ−j,−h) = −e (ξh,j), and linearity completes the result. �
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Thus,

p1 (ξh,j) = ±C1 (h− j)
e (ξh,j) = C2 (h+ j) .

We test on examples:

Claim 2.7. B1,0 = HP2 −D8.

Proof. By analogy, CP2 = CP1 ∪D4 = S2 ∪D4 = normal bundle of CP1 ∪S3 D4, so
HP2 = HP1 ∪D8 = S4 ∪D8 = normal bundle of HP1 ∪S7 D8 = ξh,j. You can check that
h, j = 0, 1 is the one. �

The inclusion i : HP1 ↪→ HP2 induces an isomorphism on

H4
(
HP2

) ∼= H4
(
HP1

)
= H4

(
S4

) ∼= Z.

Let THP2= tangent bundle of HP2.
Now we want to compute

p1 (ξ1,0) = p1

(
ξ1,0 ⊕ TS4

)
= p1

(
THP2|S4

)
= p1

(
THP2|S4

)
= p1

(
i∗

(
THP2

))
= i∗p1

(
THP2

)
= i∗2 = ±2.

The conclusion is that
p1 (ξh,j) = ±2 (h− j) .

Gysin sequence

H i+3
(
E1,0 = S7

)
→ H i

(
S4

) ∪e→ H i+4
(
S4

)
→ H i+4

(
E1,0 = S7

)
→

Take i = 0.
H3

(
S7

)
= 0→ Z ∪e→ Z→ 0→

so e = ±1.
So

e (ξh,j) = ± (h+ j) .

3. Putting it all together

Let M be a homotopy 7-sphere. Suppose M = ∂B. Define the Milnor invariant λ (M).
Let τ (B) be the signature of the Poincare dualiy pairing on H4 (B) ∼= H4 (B,M). Let
q (B) =

〈
[B] , p1 (B)2〉. Then

λ (M) = 2q (B)− τ (B) mod7

is independent of B.
Next, suppose Bh,j is a 4-ball bundle over S4 with Eh,j the associated sphere bundle

and ξh,j the associated vector bundle, with (h, j) ∈ Z⊕ Z. Then the Euler class and first
Pontryagin class are represented by

e (ξh,j) = ± (h+ j) ν

p1 (ξh,j) = ±2 (h− j) ν
in H4 (S4), with ν the fundamental cocycle of S4.

Lemma 3.1. If h+ j = 1, then Eh,j is homeomorphic to S7.
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Proof. Consider the Gysin sequence

→ H i
(
S4

) ∪e→ H i+4
(
S4

)
→ H i+4 (Eh,j)→ H i+1

(
S4

)
→

This easily implies H i (Ehj) = 0 for i 6= 0, 3, 4, 7. Take i = 0.

H3
(
S7

)
= 0→ Z ∪e→ Z→ 0→

soH∗ (Ehj) = H∗ (S7). Also, π1 (Ehj) = 0 by long exact homotopy sequence. So Hurewicz/Whitehead
imply Ehj is homotopy equivalent to S7. (Note: a subtle point – because the groups are the
same and the fact that we have a map Ehj → S7 by collapsing outside a nbhd of a point,
can use H-W.) The Poincare conjecture implies Ehj is homeomorphic to S7. �

Lemma 3.2. Let h− j = k, h+ j = 1. Then

λ (Ehj) =
(
k2 − 1

)
mod7.

Proof. Consider Bh,j. The signature is τ (Bhj) = 1, because H4 (Bhj) ∼= H4 (Bhj, Ehj) ∼=
H4 (Bhj, Bhj \ S4) ∼= H4 (S4) = Z, and the intesection number of S4 with itself is the Euler
characteristic of ξhj, which is h + j = 1. Thus, the signature is the Euler class cap the
fundamental class, which is 1. Next, q is the cap product 〈[Bhj] , p

2
1〉. Note

p1 (Bh,j) = p1

(
π∗

(
TS4

)
⊕ π∗ (ξhj)

)
,

= p1 (π∗ (ξhj))

= ±π∗2 (h− j) ν = 2k
(
generator of H4 (Bhj)

)
where π : Bhj → S4. So

q (Bhj) = 4k2.

So

λ (Ehj) ≡ 2q − τmod7

≡ 8k2 − 1 ≡
(
k2 − 1

)
mod7.

�

So if

k = 3, λ (Ehj) = 1

k = 5, λ (Ehj) = 3

k = 7, λ (Ehj) = 6.

λ
(
S7

)
= 0

Thus there are at least four different differentiable structures on S7!
Milnor: λ (−M) = −λ (M). So if k = 3, Ehj is an example of a homotopy sphere that is

not diffeomorphic to its mirror image. Moreover, if λ (M) is 1 or 6 or 3, this manifold is not
diffeo to its mirror image. So we get at least 5 exotic S7’s.

Alternate (original) proof that Ehj is homeomorphic to a standard S7: S4, two halves
identified via stereographic projection. u′ = u

‖u‖2 . Take two copies of R4 × S3. identify the

two (R4 \ 0)× S3 by

(u, v) 7→ (u′, v′) =

(
u

‖u‖2
,
uhvuj

‖u‖

)
.
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Replace u′, v′ by u′′, v′ where u′′ = u′ (v′)−1 . Let

f (x) =
Re (v)(

1 + ‖u‖2
)1/2

=
Re (u′′)(

1 + ‖u′′‖2
)1/2

The critical points are (0,±1).
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