AN ENTERTAINING PROOF USING INVERTIBLE COBORDISMS AND AN INFINITE PROCESS TRICK

A paper on singular intersection homology refers to Stallings' Ingenious Invertible Cobordism trick.

Notation 0.1. cX means open cone on X, $\bar{c}X$ is the closed cone on X.

Theorem 0.2. Suppose X and Y are compact topological spaces, and suppose there is a neighborhood U of the vertex v of cX such that $(U, v) \cong (cY, v')$. Then $(cX, v) \cong (cY, v')$.

Note that it is not true that $X \cong Y$. A counterexample is provided by the

Theorem 0.3. (Double Suspension Theorem, Cannon, Edwards) Suppose M is a homology sphere. Then $\Sigma^2 M \cong S^{n+2}$ (where Σ denotes the suspension).

(and $S^{n+2} \cong \Sigma^2 S^n$.) So either M or ΣM is possibly not a sphere, but the cone on it is the same as the cone on a sphere.

Corollary 0.4. There exist triangulations of manifolds that do not exhibit the manifold as a combinatorial manifold. (ie star neighborhood of vertex is not a sphere)

(Start with simplicial homology sphere with triangulation – suspend it twice.)

Proof. (Proof of first theorem) Draw a picture of a cone. and of U. Can retract cX along cone lines to a smaller cone (using compactness), whose boundary is a copy of X. Now play game again with a cone on Y, and you can find a smaller neighborhood of the cone point whose boundary is a copy of Y. So we have a Y collared cobordant through P to X, collared cobordant through Q to Y, and could keep going. Then $PQ = P \cup_X Q \cong Y \times [0, 1]$, $QR = Q \cup_Y R \cong X \times [0, 1]$. Also get $RQ = R \cup_X Q \cong Y \times [0, 1]$ (using copy of Q). Then $RQ \cong (Y \times [0, 1]) RQ \cong PQRQ = P (QR) Q = P (X \times [0, 1]) Q \cong PQ \cong Y \times [0, 1]$.

Then let $N = \overline{c}YP, M = \overline{c}YPQ$. Then

$$NQRQRQR...$$

= $\overline{c}X (X \times I) (X \times I) ... = \overline{c}X$
= $(NQ) (RQ) (RQ) ...$
= $\overline{c}Y (Y \times I) (Y \times I) = \overline{c}Y.$

As an encore:

Theorem 0.5. (Eilenberg Swindle) If P is a projective R-module (direct summand of a free module), there exists a free module F such that $P \oplus F$ is also free.

Proof. By assumption, there exists Q such that $P \oplus Q \cong f$ (some free module). Then

$$P \oplus Q \oplus P \oplus Q \oplus \dots$$

= $P \oplus f \oplus f \oplus \dots = P \oplus F$
= $(P \oplus Q) \oplus P \oplus Q \dots$
= $f \oplus f \oplus \dots = F$.

GREG

Theorem 0.6. There exists an irrational number x and an irrational number y such that x^y is rational.

Proof. If
$$\sqrt{2}^{\sqrt{2}}$$
 is rational, we are done ($x = y = \sqrt{2}$). Otherwise, $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = 2$, and then $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

DEPARTMENT OF MATHEMATICS, TEXAS CHRISTIAN UNIVERSITY, FORT WORTH, TEXAS 76129, USA *E-mail address*: g.friedman@tcu.edu