Definition: A metric space is proper if closed and bounded sets are compact.

Compare this with the definition of a proper map in topology: if X,Y are top spaces, a function $f: X \to Y$ is proper if $f^{-1}(K)$ is compact in X for every compact subset K of Y. A metric space X is proper if $\forall y \in Y$ the function $f: X \to \mathbb{R}$ defined by $f(x) = d(x_0, x)$ for some fixed $x_0 \in X$ is a proper function.

The following theorem is a generalization of the Hopf-Rinow theorem from differential geometry:
Theorem: Every complete locally compact length space is proper. Conversely, every proper length space is complete and locally compact.
Furthermore, all such spaces are geodesic spaces.

Definition: Let \((X, d_X), (Y, d_Y)\) be metric spaces. A map \(f: X \to Y\) is \textbf{Lipschitz} if there is a constant \(C\) such that
\[
d_Y(f(x), f(x')) \leq C d_X(x, x')
\]
for all \(x, x' \in X\).

Important example: Every smooth map between compact Riemannian manifolds is Lipschitz.
Definition: A homeomorphism $\phi: (X, d_X) \to (Y, d_Y)$ such that both ϕ and ϕ^{-1} are Lipschitz is called a bi-Lipschitz homeomorphism.

Theorem (Sullivan): Two smooth manifolds of dimension other than four (!) are bi-Lipschitz homeomorphic if and only if they are (topologically) homeomorphic.

Counterexamples in dimension 4.

Take

Definition: $f: (X, d_X) \to (Y, d_Y)$, $x_0 \in X$, $a > 0$.
The distortion of f at x_0 is defined to be

$$D_f(x_0 ; a) = \sup \{ d_Y(f(x), f(x_0)) : d_X(x, x_0) = a \}$$

$$= \inf \{ d_Y(f(x), f(x_0)) : d_X(x, x_0) = a \}$$

Roughly speaking, $D_f(x_0 ; a)$ is a measure of how far the image $f(S(x_0 ; a))$ of the sphere of radius a centered at x_0 deviates from being a sphere in Y centered at $f(x_0)$.
Definition: We say $f: X \rightarrow Y$ is K-quasi conformal if there exists a constant K such that
\[
\limsup_{a \rightarrow 0} D_f(x; a) \leq K
\]
for all $x \in X$. We say f is quasi conformal if it is K-quasi conformal for some K.

Examples: Every bi-Lipschitz homeomorphism is quasi conformal.

- A conformal map in the sense of Riemannian geometry is 1-quasi conformal.
Section 1.3

Recall the following theorem from point-set topology:

Theorem: Let \((X,d)\) be a metric space, and define \(\tilde{d} : X \times X \to [0,1]\) by \(\tilde{d}(x,y) = \min \{d(x,y), 1\}\). Then \(\tilde{d}\) is a metric on \(X\), and \((X,d)\) and \((X,\tilde{d})\) are homeomorphic.

In other words, the topology of \((X,d)\) only depends on the small-scale structure of \(d\). In coarse geometry, we consider the large-scale structure of \(d\).
Definitions: Let X, Y be metric spaces and let $f: X \to Y$ be a function, not necessarily continuous.

(a) f is (metrically) proper if $f^{-1}(B)$ is a bounded subset of X for every bounded subset B of Y.

(b) f is (uniformly) bornologous if for every $R > 0$ and $S > 0$ such that

$$d(x, x') < R \Rightarrow d_y(f(x), f(x')) < S.$$

(c) f is coarse if it is both proper and bornologous.
Remarks:

1. Metric properness is not generally the same as topological properness, but the two concepts coincide if \(X, Y \) are proper metric spaces and \(f \) is continuous. Henceforth we shall use "proper" to mean "metrically proper."

2. Note that the definition of bornologous is sort of the converse to the definition of continuity!

Example with \(X = Y = \mathbb{N} \).

1. \(f(n) = 14n + 8 \) coarse
2. \(g(n) = 1 \) not proper
3. \(h(n) = n^2 \) not bornologous.
Definition: Let X, Y be metric spaces. We say $f : X \to Y$ is **large-scale Lipschitz** if there exist positive constants c, A such that

$$d(f(x), f(\tilde{x})) \leq c \cdot d(x, \tilde{x}) + A$$

for all $x, \tilde{x} \in X$.

A large-scale Lipschitz map is bornologous,

but the converse is not generally true. However, we do have the following result:

Proposition: Let X be a length space and Y any metric space, let $f : X \to Y$ be a map. Then:

(a) f is large-scale Lipschitz;

(b) f is bornologous;

(c) there exist $R, S > 0$ such that

$$d(x, \tilde{x}) \leq R \Rightarrow d(f(x), f(\tilde{x})) < S$$

for all $x, \tilde{x} \in X$.
Definition: Maps $f, \tilde{f}: X \to Y$ are close if there exists a constant $M > 0$ such that
$$d(f(x), \tilde{f}(x)) \leq M$$
for all $x, \tilde{x} \in X$.

Proposition: f, \tilde{f} are close if and only if there exists a coarse map
$$F: X \times [0,1] \to Y$$
such that $F(x,0) = f(x)$, $F(x,1) = \tilde{f}(x)$ $\forall x \in X$.

For this reason, "close" is sometimes called "bornotopic".

Definition: Metric spaces X, Y are coarsely equivalent if there exist coarse maps $f: X \to Y$, $g: Y \to X$ such that $g \circ f$ is close to id_X and $f \circ g$ is close to id_Y.

Remark: Coarse equivalence is also called "bornotopy equivalence."
Proposition: \(\mathbb{Z} \) and \(\mathbb{R} \) are coarsely equivalent.

Proof: Let \(f: \mathbb{Z} \to \mathbb{R} \) be the inclusion map and define \(g: \mathbb{R} \to \mathbb{Z} \) by \(g(x) = \lfloor x \rfloor \). Then \(g \circ f = \text{id}_\mathbb{Z} \), and \(f \circ g(x) = \lfloor x \rfloor \) is close to \(\text{id}_\mathbb{R} \); in fact, we can take \(M = 1 \).

Remark: We will see later that \(\mathbb{R} \) and \(\mathbb{R}^2 \) are not coarsely equivalent.

Next time:

Let \(\Gamma \) be a discrete group, let \(S \) be a set of generators of \(\Gamma \). For each \(\gamma \in \Gamma \), let \(\| \gamma \| \) denote the smallest integer \(n \) such that

\[\gamma = s_1 s_2 \cdots s_n, \quad s_i \in S \text{ or } s_i^{-1} \in S \text{ for } i \leq n. \]

It is easy to see that

\[\| \gamma \gamma^{-1} \| = \| \gamma \| + \| \gamma^{-1} \|. \]