Examples:

1. \(A = \{ f \in C_b(X) : f - \lambda \in C_0(X) \text{ for some } \lambda \in \mathbb{C} \} \)
 \(Y = X^+ \), the one-point compactification of \(X \)

2. \(A = C_b(X) \)
 \(Y = \beta X \), the Stone-Čech compactification of \(X \)

3. \(X = \mathbb{R} \), \(A = \{ f : \mathbb{R} \to \mathbb{C}, \lim_{x \to \infty} f(x), \lim_{x \to -\infty} f(x) \text{ exist} \} \)
 \(Y = [-\infty, \infty] \)

Theorem: Let \(X \) be paracompact and locally compact Hausdorff, \(f \) take \(ECXX \). Let \(\overline{X} \) be a compactification of \(X \), \(\delta X = \overline{X} \setminus X \).

TFAE:
(a) the closure \overline{E} of E in $\overline{X \times X}$ intersects the complement of $X \times X$ only in the diagonal $\Delta_{\overline{X}} = \{(w,w) : w \in \partial X\}$

(b) E is proper (i.e., $E(K) \& E^{-1}(K)$ are relatively compact when K is relatively compact), and for any net $\{ (x_\alpha, y_\alpha) \}$ in E, if $\lim_{\alpha} x_\alpha = w$, then $\lim_{\alpha} y_\alpha = w$ as well.

(c) E is proper, and for every $w \in \overline{X}$ and every nbhd V of w in \overline{X}, there is a nbhd $U \subseteq V$ of w in \overline{X} with the property that $E \cap (U \times (X \setminus V)) = \emptyset$.

Furthermore, the collection of sets E satisfying these equivalent conditions are the entourages for a proper connected coarse structure on X.
Definition: This coarse structure on X is the topological coarse structure or the continuously controlled coarse structure on X associated to the compactification \overline{X}.

Examples:

1. X^+: $\mathcal{E} =$ collection of all proper subsets of $X \times X$ (indiscrète coarse structure)

2. βX: $\mathcal{E} =$ collection of all subsets of $X \times X$ with only finitely many points of the diagonal in $X \times X$ (descrete coarse structure)
Proposition: Let X, Y be locally compact Hausdorff spaces with second countable compactifications $\overline{X}, \overline{Y}$. A continuous and proper map $f: X \to Y$ is coarse (w.r.t. $\overline{X}, \overline{Y}$) if and only if f extends to a continuous map $\overline{f}: \overline{X} \to \overline{Y}$.

Remark: If $\overline{f}: \overline{X} \to \overline{Y}$ exists, then $f: X \to Y$ is coarse without the hypothesis of second countability of $\overline{X}, \overline{Y}$, but the converse requires this hypothesis.

Question: Suppose E is a coarse structure on a locally compact paracompact Hausdorff space X. Under what conditions is E the topological coarse structure associated to a compactification of X?
Partial Answer: Recall that a coarse structure on a para compact Hausdorff space X is proper if

(i) there is a controlled nbhd of the diagonal;

(ii) every bounded subset of X has compact closure. (i.e. $B \times B$ is an entourage)

(X is necessarily locally compact)

Let X be a para compact Hausdorff space equipped with a proper coarse structure. For each $f: X \to C$ that is bounded and continuous, define $df: X \times X \to C$ by the formula

$$df(x, y) = f(x) - f(y).$$

We say f is a Higson function if for each entourage E, the restriction df to E vanishes at infinity.
Proposition: The Higson functions on a proper coarse space form a unital C*-subalgebra of $C_0(X)$.

Proof: The only non-trivial point to check is closure under multiplication, which follows easily from the identity

$$dfg)(x,y) = df(x,y)g(x) + fg(y)dg(x,y).$$

We let $C_h(X)$ denote the collection of Higson functions on X, and we denote the corresponding compactification by hX. This is the Higson compactification associated to the proper coarse structure on X, and the set $hX \backslash X$ is called the Higson corona; it is denoted νX.

Definition: Let X be a proper coarse space. A **coarse compactification** of X is a compactification whose top. coarse structure is coarser (i.e., has more entourages) than the original coarse structure on X.

Example: The one-point compactification of X is always a coarse compactification.

Proposition: The Higson compactification hX of X is a coarse compactification that is universal in the following sense: given a coarse compactification \overline{X} of X, the identity map $i: X \to \overline{X}$ extends uniquely to a continuous surjection from hX to \overline{X}.
The Higson compactification βX can only be defined when X is a proper coarse space. However, the Higson corona vX can be defined for any coarse space. Here's how.

Definition: Let X be a coarse space and $f: X \to \mathbb{C}$ a function. We say f tends to 0 at infinity if for every $\varepsilon > 0$ there exists a bounded set B in X such that $|f(x)| < \varepsilon$ for $x \in X \setminus B$. We say a function $f: X \times X \to \mathbb{C}$ tends to 0 at infinity if for every $\varepsilon > 0$ there exists an entourage E such that $|f(x,y)| < \varepsilon$ for all $(x,y) \in (X \times X) \wedge E$.
Let
\[B_h(X) = \{ f : X \to C \text{ bounded : } df \text{ tends to 0 at } \infty \} \]
\[B_0(X) = \{ f : X \to C \text{ bounded : } f \text{ tends to 0 at } \infty \} \]

Then \(B_0(X) \) is an ideal in \(B_h(X) \), and

\[C_0(X) = C_h(X) \cap B_0(X) \]
\[B_h(X) = C_h(X) + B_0(X) \]

Now, if \(X \) is a proper coarse space, then

\[C(vX) = \frac{C_h(X)}{C_0(X)} \]

But by the 2nd Isomorphism Theorem from \(C(S^2) \),

\[\frac{C_h(X)}{C_0(X)} = \frac{C_h(X)}{B_0(X) \cap C_h(X)} = \frac{B_0(X) + C_h(X)}{B_0(X)} = \frac{B_h(X)}{B_0(X)} \]

Thus we can define \(vX \) as the maximal ideal space of the commutative \(C^*(S^2) \) \(\frac{B_h(X)}{B_0(X)} \).
Proposition: Let X, Y be coarse spaces. A coarse map $\phi: X \to Y$ extends to a continuous map $v\phi: vX \to vY$. Moreover, if X and \bar{Y} are close, then $v\phi = v\bar{Y}$.

Corollary: If X, Y are coarsely equivalent, then vX and vY are homeomorphic.

Note that we have two constructions here.

1. The Higson construction takes a proper coarse structure \ast and associates to it a compactification.

2. The continuous control construction takes a compactification \ast and associates to it a coarse structure.

Let \ast denote the first construction and \ast' the second.

Question: To what extent are these inverses to one another?
Answer: These are not inverses in general, but we do have the following two results:

Proposition: Let \((X, d)\) be a proper metric space. Then the bounded coarse structure on \(X\) is the topological coarse structure associated to its Higson compactification.

Proposition: Suppose \(X\) is a locally compact Hausdorff space that is equipped with the top. coarse structure assoc. to a 2nd countable compactification \(\overline{X}\). Then the Higson compactification \(\mathcal{h}X\) of \(X\) coincides with \(\overline{X}\).