Proposition: Let X be a coarse space.

(c) If B is a bounded subset of X and $E \subseteq XX$ is controlled, then $E[B]$ is bounded.

(b) If Y, Z are bounded subsets of X with nonempty intersection, then $Y \cup Z$ is bounded.

Given a coarse space X, decree that $x \sim \bar{x}$ if $\{x, \bar{x}\}$ is a bounded subset of X. This is an equivalence relation on X, and

$[x] = \text{coarsely connected component of } x \text{ in } X.$

We can extend our earlier definition on metric spaces to coarse spaces:
Definitions: Let X, Y be coarse spaces, $f: X \to Y$ a map.

(a) f is proper if $f^{-1}(B)$ is bounded in X for every bounded subset B of Y.

(b) f is bornologous if $(fxf)(E)$ is a controlled subset of $Y \times Y$ for every controlled subset E of $X \times X$.

(c) f is coarse if it is proper and bornologous.

(d) X, Y are coarsely equivalent if there exist coarse maps $f: X \to Y$, $g: Y \to X$ such that gof is close to id_X and fog is close to id_Y.

The Coarse Category:

- Objects are the class of all coarse spaces
- Morphisms are coarse maps, with close coarse maps identified.
IF X is both a topological space and a coarse space, we would like some compatibility between the two structures.

Definition: Let X be a paracompact Hausdorff top space. A coarse structure on X is proper if

(i) there is a controlled nbhd of the diagonal;

(ii) every bounded subset of X has compact closure.

Remark: These conditions imply that X is locally compact.

Proposition: Let X be a connected top space equipped with a proper coarse structure. Then X is coarsely connected. A subset of X is bounded iff it has compact closure, and every controlled subset of $X \times X$ is proper (by our definition at the beginning of this chapter).
Proposition: Let \((X,d)\) be a metric space. Its bounded coarse structure is proper if and only if it is proper as a metric space; i.e., closed bounded sets are compact.

Compactifications - As viewed by an Operator Algebraist!

- A top space \(X\) is \underline{locally compact at} \(x \in X\) if there exists a nbhd of \(x\) with compact closure.
 If \(X\) is locally compact at each of its points, we say \(X\) is \underline{locally compact}.

- A \underline{compactification} of a top space \(X\) is a compact top space \(Y\) such that
 - \(X\) is a subspace of \(Y\);
 - \(\overline{X} = Y\).

- A (Hausdorff) top space \(X\) admits a compactification if and only if \(X\) is locally compact.
Let X be a top space. A function $f : X \to \mathbb{C}$ vanishes at infinity if for every $\varepsilon > 0$ there exists a compact subset K of X such that $|f(x)| < \varepsilon$ for all $x \in X \setminus K$.

Let X be a locally compact Hausdorff space.

We let $C_0(X)$ denote the collection of continuous \mathbb{C}-valued functions on X that vanish at infinity. $C_0(X)$ is a normed algebra with norm

$$||f|| := \sup \{|f(x)| : x \in X\},$$

and has a unit if and only if X is actually compact.

Next, let $C_b(X)$ be the collection of continuous functions $f : X \to \mathbb{C}$ with the property that

$$\sup \{|f(x)| : x \in X\} < \infty.$$

This is a unital normed algebra that contains $C_0(X)$ as an ideal. Note that $C_b(X) = C_0(X)$ if and only if X is compact. Also note $C_b(X), C_0(X)$ are closed under complex conjugation.
Now suppose A is a unital normed-closed subalgebra of $C_b(X)$ that is closed under complex conjugation t and contains $C_0(X)$.

By the Gelfand-Naimark Theorem,

$$A \cong C(Y)$$

where Y is a compact Hausdorff space. Specifically,

$$Y = \text{space of mult. lm. functionals } Y \to \mathbb{C}$$

in the weak* topology (topology of pointwise convergence).

Y is the maximal ideal space of A.

Observe that X acts naturally inside of Y as evaluation maps: $\phi_x: A \to \mathbb{C},$

$$\phi_x(f) = f(x).$$

Moreover, $\bar{X} = Y$, so A determines a compactification of X.
Examples:

1. \(A = \{ f \in C_b(x) : f - \lambda \in C_c(x) \text{ for some } \lambda \in \mathbb{C} \} \)

 \(Y = X^+ \), the one-point compactification of \(X \)

2. \(A = C_b(x) \)

 \(Y = \beta X \), the Stone–Čech compactification of \(X \)

3. \(X = \mathbb{R}, \ A = \{ f : \mathbb{R} \to \mathbb{C}, \lim_{x \to \infty} f(x), \lim_{x \to -\infty} f(x) \text{ exist} \} \)

 \(Y = [-\infty, \infty] \)

Theorem: Let \(X \) be paracompact and locally compact Hausdorff, and take \(EC X \times X \). Let \(\overline{X} \) be a compactification of \(X \), and let \(\partial X = \overline{X} \setminus X \).

TFAE: